DOI QR코드

DOI QR Code

Eco-Friendly Photocatalytic Transformation of Greenhouse Gas CO2 into Precious CH4 Fuel via Cu-Deposited Black TiO2 under Simulated Sunlight Irradiation

  • Dong Jin Kim (School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University) ;
  • Hyun-Cheol Lee (JIGU Environment and Consulting Inc.) ;
  • Seung-Ho Shin (JIGU Environment and Consulting Inc.) ;
  • Wan-Kuen Jo (School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University)
  • Received : 2024.07.18
  • Accepted : 2024.08.30
  • Published : 2024.09.30

Abstract

Hereunder, the eco-friendly photocatalytic CO2 transformation capability of Cu-deposited black TiO2 (Cu/BTiO2) was evaluated to investigate if this photocatalyst proceeds the thermodynamically- and kinetically-satisfactory CO2 transformation into CH4. The clustered Cu-deposited BTiO2 (Cu/BTiO2) and Cu/BTiO2 architectures revealed noticeable photocatalytic CO2 transformation abilities, whereas the pristine TiO2 and BTiO2 catalysts displayed no significant photocatalytic CO2 transformation abilities. Especially, the photocatalytic CO2 transformation rates of a representative Cu/BTiO2 architecture were 104, 209, 272, 322, and 361 μmol/g at the irradiation times of 2, 4, 6, 8, and 10 h, respectively, while the photocatalytic CO2 transformation rates of Cu/BTiO2 were 61, 139, 217, 270, and 309 μmol/g at the same irradiation times, respectively. The promoted photocatalytic CO2 transformation ability of the Cu/BTiO2 architecture was assigned to the excellent electron-hole separation tendency, which was verified by the photoluminescence analysis. The composition ratio of Cu incorporated into BTiO2 in the Cu/BTiO2 architectures was crucial in CH4 generation. In addition, the Cu/BTiO2 architecture displayed eminent photodurability, which was verified by the consecutive experiment cycle, and the mechanistic process for CO2 transformation into CH4 via the Cu/BTiO2 architecture was established. The electronic framework of the Cu/BTiO2 architecture was established on the basis of its band gap and valence band value. Conclusively, the Cu/BTiO2 architecture is an outstanding tool for thermodynamically- and kinetically-satisfactory photocatalytic CO2 transformation into CH4 that application under simulated sunlight irradiation.

Keywords

References

  1. Bermejo-Lopez, A., Pereda-Ayo, B., Gonzalez-Marcos, J. A., Gonzalez-Velasco, J. R., 2019, Mechanism of the CO2 storage and in situ hydrogenation to CH4. Temperature and adsorbent loading effects over Ru-CaO/Al2O3 and Ru-Na2CO3/Al2O3 catalysts, Appl. Catal. B, 256, 117845.
  2. Chen, W., Wang, Y., Liu, S., Gao, L., Mao, L., Fan, Z., Shangguan, W., Jiang, Z., 2018, Non-noble metal Cu as a cocatalyst on TiO2 nanorod for highly efficient photocatalytic hydrogen production, Appl. Surf. Sci., 445, 527-534.
  3. Chen, W., Han, B., Tian, C., Liu, X., Liang, S., Deng, H., Lin, Z., 2019, MOFs-derived ultrathin holey Co3O4 nanosheets for enhanced visible light CO2 reduction, Appl. Catal. B, 244, 996-1003.
  4. Chen, X., Li, Q., Li, J., Chen, J., Jia, H., 2020, Modulating charge separation via in situ hydrothermal assembly of low content Bi2S3 into UiO-66 for efficient photothermocatalytic CO2 reduction, Appl. Catal. B, 270, 118915.
  5. Cheng, M., Gao, B., Zheng, X., Wu, W., Kong, W., Yan, P., Wang, Z., An, B., Zhang, Y., Li, Q., Xu, Q., 2024, CO2-assisted rapid synthesis of porphyrin-based Bi-MOFs for photocatalytic CO2 reduction: An Efficient strategy for carbon cycle, Appl. Catal. B, 353, 124097.
  6. Choi, M., Ahn, C. Y., Lee, H., Kim, J. K., Oh, S. H., Hwang, W., Yang, S., Kim, J., Kim, O. H., Choi, I., 2019, Bi-modified Pt supported on carbon black as electro-oxidation catalyst for 300 W formic acid fuel cell stack, Appl. Catal. B, 253, 187-195.
  7. Dong, H., Meng, X. B., Zhang, X., Tang, H. L., Liu, J. W., Wang, J. H., Wei, J. Z., Zhang, F. M., Bai, L. L., Sun, X. J., 2020, Boosting visible-light hydrogen evolution of covalent-organic frameworks by introducing Ni-based noble metal-free co-catalyst, Chem. Eng. J., 379, 122342.
  8. Fang, Y., Wang, X., 2018, Photocatalytic CO2 conversion by polymeric carbon nitrides, Chem. Commun., 54, 5674-5687.
  9. Gao, C., Low, J., Long, R., Kong, T., Zhu, J., Xiong, Y., 2020, Heterogeneous single-atom photocatalysts: Fundamentals and applications, Chem. Rev., 120, 12175-12216.
  10. Ge, H., Zhang, B., Liang, H., Zhang, M., Fang, K., Chen, Y., Qin, Y., 2020, Photocatalytic conversion of CO2 into light olefins over TiO2 nanotube confined Cu clusters with high ratio of Cu+, Appl. Catal. B, 263, 118133.
  11. Guo, Q., Fu, L., Yan, T., Tian, W., Ma, D., Li, J., Jiang, Y., Wang, X., 2020, Improved photocatalytic activity of porous ZnO nanosheets by thermal deposition graphene-like g-CN4 for CO2 reduction with H2O vapor, Appl. Surf. Sci., 509, 144773.
  12. Ishii, T., Anzai, A., Yamamoto, A., Yoshida, H., 2020, Calcium zirconate photocatalyst and silver cocatalyst for reduction of carbon dioxide with water, Appl. Catal. B, 277, 119192.
  13. Jiang, Z., Zhang, X., Yuan, Z., Chen, J., Huang, B., Dionysiou, D. D., Yang, G., 2018, Enhanced photocatalytic CO2 reduction via the synergistic effect between Ag and activated carbon in TiO2/AC-Ag ternary architecture, Chem. Eng. J., 348, 592-598.
  14. Lewis, N. S., 2019, A Prospective on energy and environmental science, Energy Enviro. Sci., 12, 16-18.
  15. Li, X., Yu, J., Jaroniec, M., Chen, X., 2019, Cocatalysts for selective photoreduction of CO2 into solar fuels, Chem. Rev., 119, 3962-4179.
  16. Li, L., Chang, X., Lin, X., Zhao, Z. J., Gong, J., 2020, Theoretical insights into single-atom catalysts, Chem. Soc. Rev., 49, 8156-8178.
  17. Li, J., Huang, B., Guo, Q., Guo, S., Peng, Z., Liu, J., Tian, Q., Yang, Y., Xu, Q., Liu, Z., Liu, B., 2021, Van der Waals heterojunction for selective visible-light-driven photocatalytic CO2 reduction, Appl. Catal. B, 284, 119733.
  18. Liao, G. F., Gong, Y., Zhang, L., Gao, H. Y., Yang, G. J., Fang, B. Z., 2019, Semiconductor polymeric graphitic carbon nitride photocatalysts: The ''holy grail'' for the photocatalytic hydrogen evolution reaction under visible light, Energy Environ. Sci., 12, 2080-2147.
  19. Liu, C., Nauert, S. L., Alsina, M. A., Wang, D., Grant, A., He, K., Weitz, E., Nolan, M., Graya, K. A., Notestein, J. M., 2019, Role of surface reconstruction on Cu/TiO2 nanotubes for CO2 conversion, Appl. Catal. B, 255, 117754.
  20. Maldonado, M. I., Lopez-Martin, A., Colon, G., Peral, J., Martinez-Costa, J. I., Malato, S., 2018, Solar pilot plant scale hydrogen generation by irradiation of Cu/TiO2 architectures in presence of sacrificial electron donors, Appl, Catal. B, 229, 15-23.
  21. Majumdar, S. S., Moses-DeBusk, M., Deka, D. J., Kidder, M. K., Thomas, C. R., Pihl, J. A., 2024, Impact of Mg on Pd-based methane oxidation catalysts for lean-burn natural gas emissions control, Appl. Catal. B, 341, 123253.
  22. Naldoni, A., Altomare, M., Zoppellaro, G., Liu, N., Kment, Š., Zboril, R., Schmuki, P., 2019, Photocatalysis with reduced TiO2: From black TiO2 to cocatalyst-free hydrogen production, ACS Catal., 9, 345-364.
  23. Pan, F., Li, B., Deng, W., Du, Z., Gang, Y., Wang, G., Li, Y., 2019, Promoting electrocatalytic CO2 reduction on nitrogen-doped carbon with sulfur addition, Appl. Catal. B, 252, 240-249.
  24. Rajaraman, T. S., Parikh, S. P., Gandhi, V. G., 2020, Black TiO2: A Review of its properties and conflicting trends, Chem. Eng. J., 389, 123918.
  25. She, P., Rao, H., Guan, B., Qin, J. S., Yu, J., 2020, Spatially separated bifunctional cocatalysts decorated on hollow-structured TiO2 for enhanced photocatalytic hydrogen generation, ACS Appl. Mater. Interfaces, 12, 23356-23362.
  26. Shen, R., Jiang, C., Xiang, Q., Xie, J., Li, X., 2019, Surface and interface engineering of hierarchical photocatalysts, Appl. Surf. Sci., 471, 43-87.
  27. Shi, Q., Li, Z., Chen, L., Zhang, X., Han, W., Xie, M., Yang, J., Jing, L., 2019, Synthesis of SPR Au/BiVO4 quantum dot/rutile-TiO2 nanorod array architectures as efficient visible-light photocatalysts to convert CO2 and mechanism insight, Appl. Catal. B, 244, 641-649.
  28. Tang, Y., L, Y., Bao, W., Yan, W., Zhang, J., Huang, Y., Li, H., Wang, Z., Liu, M., Yu, F., 2023, Enhanced dry reforming of CO2 and CH4 on photothermal catalyst Ru/ SrTiO3, Appl. Catal. B, 338, 123054.
  29. Ullattil, S. G., Narendranath, S. B., Pillai, S. C., Periyat, P., 2018, Black TiO2 nanomaterials: A Review of recent advances, Chem. Eng. J., 343, 708-736,
  30. Wang, L., Duan, S., Jin, P., She, H., Huang, J., Lei, Z., Zhang, T., Wang, Q., 2018, Anchored Cu(II) tetra(4-carboxylphenyl)porphyrin to P25 (TiO2) for efficient photocatalytic ability in CO2 reduction, Appl. Catal. B, 239, 599-608.
  31. Wang, S. L., Xu, M., Peng, T. Y., Zhang, C. X., Li, T., Hussain, I., Wang, J. Y., Tan, B. E., 2019a, Porous hypercross-linked polymer-TiO2-graphene architecture photocatalysts for visible-light-driven CO2 conversion, Nat. Commun., 10, 676-686.
  32. Wang, R., Shen, J., Sun, K., Tang, H., Liu, Q., 2019b, Enhancement in photocatalytic activity of CO2 reduction to CH4 by 0D/2D Au/TiO2 plasmon heterojunction, Appl. Surf. Sci., 493, 1142-1149.
  33. Wang, Y., Huang, H., Zhang, Z. Wang, C., Yang, Y., Li, Q., Xu, D., 2021, Lead-free perovskite Cs2AgBiBr6@g-C3N4 Z-scheme system for improving CH4 production in photocatalytic CO2 reduction, Appl. Catal. B, 282, 119570.
  34. Wei, T., Zhu, Y., Wu, Y., An, X., Liu, L. M., 2019, Effect of single-atom cocatalysts on the activity of faceted TiO2 photocatalysts, Langmuir, 35, 391-397.
  35. Wu, J., Feng, Y., Li, D., Han, X., Liu, J., 2019, Efficient photocatalytic CO2 reduction by PeO linked g-C3N4/TiO2-nanotubes Z-scheme architectures, Energy, 178, 168-175.
  36. Xie, C., Niu, Z., Kim, D., Li, M., Yang, P., 2020, Surface and interface control in nanoparticle catalysis, Chem. Rev., 120, 1184-1249.
  37. Xiong, Z., Xu, Z., Li, Y., Dong, L., Wang, J., Zhao, J., Chen, X., Zhao, Y., Zhao, H., Zhang, J., 2020, Incorporating highly dispersed and stable Cu+ into TiO2 lattice for enhanced photocatalytic CO2 reduction with water, Appl. Surf. Sci., 507, 145095.
  38. Xu, S., Chansai, S., Shao, Y., Xu, S., Wang, Y. C., Haigh, S., Mu, Y., Jiao, Y., Stere, C. E., Chen, H., Fan, X., Hardacre, C., 2020, Mechanistic study of non-thermal plasma assisted CO2 hydrogenation over Ru supported on MgAl layered double hydroxide, Appl. Catal. B, 268, 118752.
  39. Yi, J., Li, H., Gong, Y., She, X., Song, Y., Xu, Y., Deng, J., Yuan, S., Xu, H., Li, H., 2019, Phase and interlayer effect of transition metal dichalcogenide cocatalyst toward photocatalytic hydrogen evolution: The case of MoSe2, Appl. Catal. B, 243, 330-336.
  40. Zeng, C., Zeng, Q., Dai, C., Zhang, L., Hu, Y., 2021, Synergistic effect of surface coated and bulk doped carbon on enhancing photocatalytic CO2 reduction for MgIn2S4 microflowers, Appl. Surf. Sci., 542, 148686.
  41. Zhang, H., Li, Y., Wang, J., Wu, N., Sheng, H., Chen, C., Zhao, J., 2021, An Unprecedent hydride transfer pathway for selective photocatalytic reduction of CO2 to formic acid on TiO2, Appl. Catal. B, 284, 11692.
  42. Zhao, X., Guan, J., Li, J., Li, X., Wang, H., Huo, P., Yan, Y., 2021, CeO2/3D g-C3N4 heterojunction deposited with Pt cocatalyst for enhanced photocatalytic CO2 reduction, Appl. Surf. Sci., 537, 147891.
  43. Zhou, M., Wang, S., Yang, P., Huang, C., Wang, X., 2018, Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2, ACS Catal. 8, 4928-4936.