• Title/Summary/Keyword: energy flux tower

Search Result 40, Processing Time 0.024 seconds

Development of Heliostat Field Operational Algorithm for 200kW Tower Type Solar Thermal Power Plant (200kW 타워형 태양열발전시스템의 헬리오스타트 필드 운영 알고리즘 개발)

  • Park, Young Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.33-41
    • /
    • 2014
  • Heliostat field in a tower type solar thermal power plant is the sun tracking mirror system which affects the overall efficiency of solar thermal power plant most significantly while consumes a large amount of energy to operate it. Thus optimal operation of it is very crucial for maximizing the energy collection and, at the same time, for minimizing the operating cost. Heliostat field operational algorithm is the logics to control the heliostat field efficiently so as to optimize the heliostat field optical efficiency and to protect the system from damage as well as to reduce the energy consumption required to operate the field. This work presents the heliostat field operational algorithm developed for the heliostat field of 200kW solar thermal power plant built in Daegu, Korea. We first review the structure of heliostat field control system proposed in the previous work to provide the conceptual framework of how the algorithm developed in this work could be implemented. Then the methodologies to operate the heliostat field properly and efficiently, by defining and explaining the various operation modes, are discussed. A simulation, showing the heat flux distribution collected by the heliostat field at the receiver, is used to show the usefulness of proposed heliostat field operational algorithm.

Assessment of Outgoing Longwave Radiation using COMS : Cheongmi and Sulma Catchments (천리안 위성을 사용한 방출장파복사량 검증 : 청미천, 설마천)

  • Baek, Jong Jin;Sur, Chanyang;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.465-476
    • /
    • 2013
  • The outgoing longwave radiation (Rlu) for estimation of evapotranspiration is essential to understand energy balance of earth. However, the ground measurement based Rlu has a limitation that the observation can just stand for the exact site, not for an area. In this study, remote sensing technique is adopted to compensate the limitation of ground observation using the geostationary satellite. We calculated Rlu using Communication, Ocean and Meteorological Satellite (COMS). We validated Rlu from COMS with Cheongmicheon (CFK) and Sulmacheon (SMK) flux tower observations controlled by Hydrological Survey Center. The results showed that Rlu from COMS represented reasonable correlation with ground based measurement. Based on the results in this study, COMS will be able to be used for estimation of evapotranspiration.

Estimation of spatial evapotranspiration using Terra MODIS satellite image and SEBAL model in mixed forest and rice paddy area (SEBAL 모형과 Terra MODIS 영상을 이용한 혼효림, 논 지역에서의 공간증발산량 산정 연구)

  • Lee, Yong Gwan;Jung, Chung Gil;Ahn, So Ra;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.227-239
    • /
    • 2016
  • This study is to estimate Surface Energy Balance Algorithm for Land (SEBAL) daily spatial evapotranspiration (ET) comparing with eddy covariance flux tower ET in Seolmacheon mixed forest (SMK) and Cheongmicheon rice paddy (CFK). The SEBAL input data of Albedo, Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI) from Terra MODIS products and the meteorological data of wind speed, and solar radiation were prepared for 2 years (2012-2013). For the annual average flux tower ET of 302.8 mm in SMK and 482.0 mm in CFK, the SEBAL ETs were 183.3 mm and 371.5 mm respectively. The determination coefficients ($R^2$) of SEBAL ET versus flux tower ET for total periods were 0.54 in SMK and 0.79 in CFK respectively. The main reason of SEBAL ET underestimation for both sites was from the determination of hot pixel and cold pixel of the day and affected to the overestimation of sensible heat flux.

Tower-based Flux Measurement Using the Eddy Covariance Method at Ieodo Ocean Research Station (이어도해양과학기지에서의 에디 공분산 방법을 이용한 플럭스 관측)

  • Lee, Hee-Choon;Lee, Bang-Yong;Kim, Joon;Shim, Jae-Seol
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.145-154
    • /
    • 2004
  • Surface energy and $CO_2$ fluxes have been measured over an ocean at Ieodo Ocean Research Station of KORDI since May 2003. Eddy covariance technique, which is a direct flux measurement, is used to quantitatively understand the interaction between the ocean surface and the atmospheric boundary layer. Although fluxes were continuously measured during the period from May 2003 to February 2004, the quality control of these data yielded <20% of data retrieval. The atmospheric stability did not show any distinct dirunal patterns and remained near-neutral to stable from May to June but mostly unstable during fall and winter in 2003. Sensible heat flux showed a good correlation with the difference between the sea water temperature and the air temperature. The maximum fluxes of sensible heat and latent heat were $120Wm^{-2}$ and $350Wm^{-2}$ respectively, with an averaged Bowen ratio of 0.2. The ocean around the tower absorbed $CO_2$ from the atmosphere and the uptake rates showed seasonal variations. Based our preliminary results, the daytime $CO_2$ flux was steady with an average of $-0.1 mgCO_2m^{-2}s^{-1}$ in summer and increased in winter. The nighttime $CO_2$ uptake was greater and fluctuating, reaching up to $-0.1 mgCO_2m^{-2}s^{-1}$ but these data require further examination due to weak turbulent mixing at nighttime. The magnitude of $CO_2$ flux was positively correlated with the half hourly changes in horizontal mean wind speed. Due to the paucity of quality data, further data collection is needed for more detailed analyses and interpretation.

Using Tower Flux Data to Assess the Impact of Land Use and Land Cover Change on Carbon Exchange in Heterogeneous Haenam Cropland (비균질한 해남 농경지의 탄소교환에 미치는 토지사용 및 피복변화의 영향에 대한 미기상학 자료의 활용에 관하여)

  • Indrawati, Yohana Maria;Kang, Minseok;Kim, Joon
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2013.11a
    • /
    • pp.30-31
    • /
    • 2013
  • Land use and land cover change (LULCC) due to human activities directly affects natural systems and contributes to changes in carbon exchange and climate through a range of feedbacks. How land use and land cover changes affect carbon exchanges can be assessed using multiyear measurement data from micrometeorological flux towers. The objective of the research is to assess the impact of land use and land cover change on carbon exchange in a heterogeneous cropland area. The heterogeneous cropland area in Haenam, South Korea is also subjected to a land conversion due to rural development. Therefore, the impact of the change in land utilization in this area on carbon exchange should be assessed to monitor the cycle of energy, water, and carbon dioxide between this key agricultural ecosystem and the atmosphere. We are currently conducting the research based on 10 years flux measurement data from Haenam Koflux site and examining the LULCC patterns in the same temporal scale to evaluate whether the LULCC in the surrounding site and the resulting heterogeneity (or diversity) have a significant impact on carbon exchange. Haenam cropland is located near the southwestern coast of the Korean Peninsula with land cover types consisting of scattered rice paddies and various croplands (seasonally cultivated crops). The LULCC will be identified and quantified using remote sensing satellite data and then analyzing the relationships between LULCC and flux footprint of $CO_2$ from tower flux measurement. We plan to calculate annual flux footprint climatology map from 2003 to 2012 from the 10 years flux observation database. Eventually, these results will be used to quantify how the system's effective performance and reserve capacity contribute to moving the system towards more sustainable configuration. Broader significance of this research is to understand the co-evolution of the Haenam agricultural ecosystem and its societal counterpart which are assumed to be self-organizing hierarchical open systems.

  • PDF

Estimation of Spatial Evapotranspiration Using Terra MODIS Satellite Image and SEBAL Model - A Case of Yongdam Dam Watershed - (Terra MODIS 위성영상과 SEBAL 모형을 이용한 공간증발산량 산정 연구 - 용담댐 유역을 대상으로 -)

  • Lee, Yong-Gwan;Kim, Sang-Ho;Ahn, So-Ra;Choi, Min-Ha;Lim, Kwang-Suop;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.90-104
    • /
    • 2015
  • The purpose of this paper is to build a spatio-temporal evapotranspiration(ET) estimation model using Terra MODIS satellite image and by calibrating with the flux tower ET data from watershed. The fundamentals of spatial ET model, Surface Energy Balance Algorithm for Land(SEBAL) was adopted and modified to estimate the daily ET of Yongdam Dam watershed in South Korea. The daily Normalized Distribution Vegetation Index(NDVI), Albedo, and Land Surface Temperature(LST) from MODIS and the ground measured wind speed and solar radiation data were prepared for 2 years(2012-2013). The SEBAL was calibrated with the forest ET measured by Deokyusan flux tower in the study watershed. Among the model parameters, the important parameters were surface albedo, NDVI and surface roughness in order for momentum transport during calculation of sensible heat flux. As a result of the final calibration, the monthly averaged albedo and NDVI were used because the daily values showed big deviation with unrealistic change. The determination coefficient($R^2$) between SEBAL and flux data was 0.45. The spatial ET reflected the geographical characteristics showing the ET of lowland areas was higher than the highland ET.

Water Circulation Characteristics of a Water/Steam Receiver for Solar Power Tower System at Various Heat Fluxes (타워형 태양열 발전 흡수기의 열유속에 따른 수순환 특성 연구)

  • Seo, Ho-Young;Kim, Jong-Kyu;Kang, Yong-Heack;Kim, Yong-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • This paper describes water circulation characteristics of a water/steam receiver at various heat fluxes. The water/steam receiver for a solar tower power system is a natural circulation type. Experimental conditions of water and steam were set at a pressure of 5 bar and temperature of $151.8^{\circ}C$. The experimental device for the water/steam receiver consisted of a steam drum, upper/lower header, riser tubes, and downcomer tube. The experiments were conducted by varying heat fluxes in terms of mass flow rate in each riser tube. However, the total mass flow rate on the riser tubes was fixed at 217.4 g/s. For the uniform heat flux, while the water temperature of the steam drum and upper header were kept at steady state, the temperature of the lower header was fluctuated. For the non-uniform heat flux, while the temperature of the steam drum was kept steady state, the temperature difference increased in the right and left side of the upper header, and the temperature of the lower header was fluctuated.

큰 길 TOWER 전기설비 개요

  • 김명수
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.5 no.4
    • /
    • pp.3-7
    • /
    • 1991
  • This paper proposes a simplifying model for the calculation of the radiant flux and radiation energy in an RD(Radiation Dominated) arcplasma. Defects of the previous models are that the radiant flux and radition energy must be numerically solved by the three dimensional integration, and these calculations demand enormous computing time. These attribute to the global properties of radiation transfer. This paper suggests a simple calculation technique of radiation characteristics by considering the relation between the plasma states and the radiation transfer process and by the systematic tabulation of the relation.

  • PDF

Analysis of Radiation Energy Budget Using WISE Observation Data on the Seoul Metropolitan Area (WISE 관측자료를 이용한 수도권지역의 복사에너지수지 분석)

  • Jee, Joon-Bum;Lee, Hankyung;Min, Jae-Sik;Chae, Jung-Hoon;Kim, Sangil
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.103-114
    • /
    • 2017
  • Radiation energy budget was analyzed using observation data from the Weather Information Service Engine (WISE) energy flux tower on the Seoul metropolitan area. Among observation data from the 13 energy flux towers, we used meteorological variables, radiation data (upward and downward short wave, upward and downward long wave, net short wave, net long wave and net radiation), albedo and emissivity for 15 months from July 2016 to September 2017. Although Gajwa (205) and Ttuksumm (216) sites located in urban, the albedo was relatively high due to the surround environment by glass wall buildings and the Han river around the sites. And Bucheon (209) site located in the suburb represented generally low emissivity. As a result, the albedo decreased and the emissivity increased in the city center. In the Seoul metropolitan area, the net radiation energy is $73.9W/m^2$ that the radiation budget of the surface is absorbed into the atmosphere. According to WISE observation data, it can be seen that observation at each sites are influenced by the surrounding environment.

CO2 and Energy Exchange in a Rice Paddy for the Growing Season of 2002 in Hari, Korea (한국 하리 논에서의 2002년 생장기간의 CO2와 에너지의 교환)

  • Byung-Kwan Moon;Jinkyu Hong;Byoung-Ryol Lee;Jin I. Yun;Eun Woo Park;Joon Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.51-60
    • /
    • 2003
  • Rice, which occupies about 60% of the farmland in Korea, is a staple crop in Asia. It not only absorbs $CO_2$ from the atmosphere, but also emits carbon in a form of CH$_4$. It has a potential role in the global budget of greenhouse gases because of its relative contributions of carbon absorption and emission associated with changing hydrologic cycle. To better understand its current and future role, seasonal variations of energy and $CO_2$ exchange in this critical ecosystem need to be quantified. The purpose of this study was to measure, document and understand the exchange of energy and $CO_2$ in a typical rice paddy in Korea throughout the whole growing season. Since late April of 2002, we have conducted measurements of energy and $CO_2$ exchange in a rural rice paddy at Hari site, one of the Korea regional network of tower flux measurement (KoFlux). After the quality control and gap-filling, the observed fluxes were analyzed in the context of micrometeorology and biophysics. $CO_2$ and energy exchanges varied significantly with land cover changes (e.g., plant growth stages), in addition to changes in weather and climate conditions. This study, reporting first direct measurement of energy and $CO_2$ exchange over a rice paddy in Korea, would serve as a useful database as one of the reference sites in AsiaFlux and FLUXNET.