DOI QR코드

DOI QR Code

Estimation of Spatial Evapotranspiration Using Terra MODIS Satellite Image and SEBAL Model - A Case of Yongdam Dam Watershed -

Terra MODIS 위성영상과 SEBAL 모형을 이용한 공간증발산량 산정 연구 - 용담댐 유역을 대상으로 -

  • Lee, Yong-Gwan (Dept. of Civil & Environmental System Engineering, Konkuk University) ;
  • Kim, Sang-Ho (Dept. of Civil & Environmental System Engineering, Konkuk University) ;
  • Ahn, So-Ra (Dept. of Civil & Environmental System Engineering, Konkuk University) ;
  • Choi, Min-Ha (Dept. of Water Resources, Sungkyunkwan University) ;
  • Lim, Kwang-Suop (Water Resources Research Center, K-water Institute, Korea Water Resources Corporation) ;
  • Kim, Seong-Joon (Dept. of Civil & Environmental System Engineering, Konkuk University)
  • 이용관 (건국대학교 사회환경시스템공학과) ;
  • 김상호 (건국대학교 사회환경시스템공학과) ;
  • 안소라 (건국대학교 사회환경시스템공학과) ;
  • 최민하 (성균관대학교 수자원학과) ;
  • 임광섭 (한국수자원공사 K-water 연구원 수자원연구소) ;
  • 김성준 (건국대학교 사회환경시스템공학과)
  • Received : 2014.11.27
  • Accepted : 2015.01.26
  • Published : 2015.03.31

Abstract

The purpose of this paper is to build a spatio-temporal evapotranspiration(ET) estimation model using Terra MODIS satellite image and by calibrating with the flux tower ET data from watershed. The fundamentals of spatial ET model, Surface Energy Balance Algorithm for Land(SEBAL) was adopted and modified to estimate the daily ET of Yongdam Dam watershed in South Korea. The daily Normalized Distribution Vegetation Index(NDVI), Albedo, and Land Surface Temperature(LST) from MODIS and the ground measured wind speed and solar radiation data were prepared for 2 years(2012-2013). The SEBAL was calibrated with the forest ET measured by Deokyusan flux tower in the study watershed. Among the model parameters, the important parameters were surface albedo, NDVI and surface roughness in order for momentum transport during calculation of sensible heat flux. As a result of the final calibration, the monthly averaged albedo and NDVI were used because the daily values showed big deviation with unrealistic change. The determination coefficient($R^2$) between SEBAL and flux data was 0.45. The spatial ET reflected the geographical characteristics showing the ET of lowland areas was higher than the highland ET.

본 연구의 목적은 위성영상을 이용해 시공간 증발산량을 모의할 수 있는 증발산량 산정 모형을 구축하고, 플럭스 타워 실측 증발산량과 비교를 통해 적용성을 평가하는데 있다. 증발산량 산정 모형은 SEBAL(Surface Energy Balance Algorithm for Land)을 구축하였으며, 모형 내 일부 알고리즘을 수정하여 적용하였다. SEBAL 모형의 위성 입력 자료로는 2개년(2012-2013)의 MODIS Normal Distribution Vegetation Index(NDVI), Albedo, Land Surface Temperature(LST) 영상을 500m의 공간해상도로 구축하였으며, 유역주변 기상청 기상관측소(5개 지점)의 풍속, 풍속측정높이, 일사량 자료를 내삽(Interpolation)하여 활용하였다. 모형의 적용성 평가를 위하여 금강유역의 용담댐을 대상으로 공간 증발산량을 산정하여 유역 내에 위치한 덕유산 플럭스 타워의 산림 증발산량과 비교분석하였다. 모형 매개변수 중 Albedo와 NDVI, 지표 거칠기(Surface roughness) 순으로 민감한 것으로 분석되었으며, 모형의 보정을 위해 최종적으로 Albedo와 NDVI는 월별 평균값을 적용하였다. 모의 기간 동안의 결정계수($R^2$)는 0.45이었다. SEBAL 모형은 특히 지형적 특성을 반영하므로 유역내에서 고지대에 비해 저지대에서 증발산량이 높게 산정되는 경향을 보였다.

Keywords

References

  1. Ahrens, C.D. 2006. Meteorology Today. An Introduction to Weather, Climate, and the Environment. eighth Edition. Thompson, Brooks/Cole. USA.
  2. Alcamo, J., P. Doll, F. Kaspar, and S. Siebert. 1997. Global change and global scenarios of water use and availability: an application of Water GAP 1.0. Report A9701. Kassel, Germany: University of Kassel, Center for Environmental Systems Research.
  3. Allen, R.G., A. Irmak, R. Trezza, J.M. Hendrickx, W. Bastiaanssen and J. Kjaersgaard. 2011. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrological Processes 25(26):4011-4027. https://doi.org/10.1002/hyp.8408
  4. Allen, R.G., M. Tasumi, A. Morse, R. Trezza, J.L. Wright, W. Bastiaanssen, W. Kramber, I. Lorite and C.W. Robison. 2007a. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-applications. Journal of irrigation and drainage engineering 133(4):395-406. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(395)
  5. Allen, R.G., M. Tasumi and R. Trezza. 2007b. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model. Journal of irrigation and drainage engineering 133(4):380-394. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)
  6. Anderson, M., J. Norman, G. Diak, W. Kustas and J. Mecikalski. 1997. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sensing of Environment 60(2):195-216. https://doi.org/10.1016/S0034-4257(96)00215-5
  7. Bastiaanssen, W.G.M. 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz basin, Turkey. Journal of Hydrology 229(1):87-100. https://doi.org/10.1016/S0022-1694(99)00202-4
  8. Bastiaanssen, W.G.M., B. Thoreson, B. Clark and G. Davids. 2010. Discussion of "Application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska" by Ramesh K. Singh, Ayse Irmak, Suat Irmak, and Derrel L. Martin. Journal of Irrigation and Drainage Engineering 136(4):282-283. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000216
  9. Bastiaanssen, W.G.M., H. Pelgrum, J. Wang, Y. Ma, J. Moreno, G. Roerink and T. Van der Wal. 1998a. A remote sensing surface energy balance algorithm for land(SEBAL): part 2: validation. Journal of Hydrology 212:213-229.
  10. Bastiaanssen, W.G.M., M. Menenti, R. Feddes and A. Holtslag. 1998b. A remote sensing surface energy balance algorithm for land(SEBAL), 1. formulation. Journal of Hydrology 212:198-212.
  11. Chin, D.A. 2000. Water-Resources Engineering. Prentice Hall, New Jersey.
  12. Dastorani, M.T. and S. Poormohammadi. 2012. Evaluation of water balance in a mountainous upland catchment using SEBAL approach. Water Resources Management 26(7):2069-2080. https://doi.org/10.1007/s11269-012-9999-y
  13. Gentile, A., G. Zhang, L. Pierce, G. Ciraolo and G. La Loggia. 2009. Analysis of the energetic flows through the sebal application to the assessment of the actual evapotranspiration in a Napa Valley vineyard California (USA). Proceeding of $12^{\circ}$ AIAM Conference, June 15-17 Sassari (Italy):116-117.
  14. Ha, R., H.J. Shin, M.S. Lee and S.J. Kim. 2010. Estimation of spatial evapotranspiration using satellite images and SEBAL model. Journal of the Korean Society of Civil Engineers 30(3B):233-242 (하림, 신형진, 이미선, 김성준. 2010. 위성영상과 SEBAL 모형을 이용한 공간증발산량 산정 연구. 대한토목학회논문집 30(3B):233-242).
  15. Ha, R., H.J. Shin and S.J. Kim. 2007. Proposal of prediction technique for future vegetation information by climate change using satellite image. Journal of the Korean Association of Geographic Information Studies 10(3): 58-69 (하림, 신형진, 김성준. 2007. 위성영상을 이용한 기후변화에 따른 미래 식생정보 예측 기법 제안. 한국지리정보학회지 10(3):58-69).
  16. Im, J.S. 2013. Applicability evaluation of SEBAL using multi-temporal satellite images and observed evapotranspiration data : focused on Wangsuk river basin, Master Thesis, Seoul National University, Korea (임종서. 2013. 다중시기 위성영상과 증발산 실측자료를 이용한 SEBAL 모형의 적용성 평가. 서울대학교 대학원 석사학위논문).
  17. Korea Meteorological Administration. 2012. Annual report of automatic weather station data. pp.62-63.
  18. K-water. 2013. Report on technical assistance of Deokyusan flux tower evapotranspiration estimation and analysis. 5pp (한국수자원공사. 2013. 덕유산 플럭스타워 증발산 산정 및 분석 기술지원 보고서. 5쪽).
  19. Li, X., P. Yang, S. Ren, Y. Li, H. Liu, J. Du, P. Li, C. Wang and L. Ren. 2010. Modeling cherry orchard evapotranspiration based on an improved dual-source model. Agricultural Water Management 98(1): 12-18. https://doi.org/10.1016/j.agwat.2010.07.019
  20. Long, D. and V.P. Singh. 2012. A modified surface energy balance algorithm for land(M-SEBAL) based on a trapezoidal framework. Water Resources Research 48(2):W02528.
  21. Ministry of Land, Transport and Maritime Affairs. 2011. Water Vision 2020. 12pp (국토해양부. 2011. 수자원장기종합계획 2011-2020. 12쪽).
  22. Morse, A., M. Tasumi, R.G. Allen and W.J. Kramber. 2000. Application of the SEBAL methodology for estimating consumptive use of water and streamflow depletion in the Bear River Basin of Idaho through remote sensing. Idaho Department of Water Resources-University of Idaho.
  23. Norman, J.M., W.P. Kustas and K.S. Humes. 1995. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology 77(3):263-293. https://doi.org/10.1016/0168-1923(95)02265-Y
  24. Park, J.Y., H. Jung, C.H. Jang and S.J. Kim. 2014. Assessing climate change impact on hydrological components of Yongdam dam watershed using RCP emission scenarios and SWAT model. Journal of the Korean Society of Agricultural Engineers 56(3):19-29 (박종윤, 정혁, 장철희, 김성준. 2014. RCP 배출 시나리오와 SWAT 모형을 이용한 기후변화가 용담댐 유역의 수문요소에 미치는 영향 평가. 한국농공학회논문집 56(3):19-29). https://doi.org/10.5389/KSAE.2014.56.3.019
  25. Shin, S.C. and T.Y. An. 2004. Estimation of areal evapotranspiration using NDVI and temperature data. Journal of the Korean Association of Geographic Information Studies 7(3):79-89 (신사철, 안태용. 2004. NDVI와 기온자료를 이용한 광역증발산량 추정. 한국지리정보학회지 7(3): 79-89).
  26. Shin, S.C. and T.Y. An. 2007. Development of estimating method for areal evapotranspiration using satellite data. Journal of the Korean Association of Geographic Information Studies 10(2):70-80 (신사철, 안태용. 2007. 인공위성 자료를 활용한 광역증발산량의 산정방법 개발. 한국지리정보학회지 10(2):70-80).
  27. Singh, R.K., A. Irmak, S. Irmak and D.L. Martin. 2008. Application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska. Journal of Irrigation and Drainage Engineering 134(3):273-285. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:3(273)
  28. Su, Z. 2002. The surface energy balance system(SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences 6(1):85-99. https://doi.org/10.5194/hess-6-85-2002
  29. Tang, R., Z.L. Li, K.S. Chen, Y. Jia, C. Li and X. Sun. 2013. Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data. Agricultural and Forest Meteorology 174:28-42.
  30. Teixeira, A.H.C., W.G.M. Bastiaanssen, M.D. Ahmad and M.G. Bos. 2009. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the low-middle Sao Francisco river basin, Brazil. Agricultural and Forest Meteorology 149(3-4):462-476. https://doi.org/10.1016/j.agrformet.2008.09.016
  31. Yoo, J.W. 2003. The estimation of evapotranspiration with SEBAL model in the Geumgang upper basin, Korea. Master Thesis, Seoul National University, Korea (유진웅. 2003. SEBAL 모형을 이용환 증발산량의 추정 : 금강 상류지역을 대상으로. 서울대학교 대학원 석사학위논문).

Cited by

  1. Estimation of spatial evapotranspiration using Terra MODIS satellite image and SEBAL model in mixed forest and rice paddy area vol.49, pp.3, 2016, https://doi.org/10.3741/JKWRA.2016.49.3.227
  2. The Modified SEBAL for Mapping Daily Spatial Evapotranspiration of South Korea Using Three Flux Towers and Terra MODIS Data vol.8, pp.12, 2016, https://doi.org/10.3390/rs8120983
  3. Terra MODIS NDVI를 활용한 3월말 논지역 건조상태에 따른 가뭄표현 가능성 연구 vol.20, pp.3, 2015, https://doi.org/10.11108/kagis.2017.20.3.027
  4. MODIS 이미지를 이용한 지표특성에 따른 토양수분의 시·공간적 분포 특성 vol.59, pp.6, 2017, https://doi.org/10.5389/ksae.2017.59.6.029
  5. 수자원분야의 위성영상 활용 현황과 전망 vol.51, pp.1, 2015, https://doi.org/10.11614/ksl.2018.51.1.105
  6. 용담댐유역의 다지점 유량관측 자료 이용에 따른 SWAT 모형의 정확도 향상성 평가 vol.21, pp.3, 2015, https://doi.org/10.11108/kagis.2018.21.3.104
  7. Terra/Aqua MODIS LST를 이용한 폭염 및 한파기간 동안 습지의 지면온도 완화효과 분석 vol.21, pp.no.spc, 2015, https://doi.org/10.17663/jwr.2019.21.s-1.123
  8. 토양수분 데이터의 거동 및 품질 평가: 용담시험유역 사례연구 vol.52, pp.12, 2015, https://doi.org/10.3741/jkwra.2019.52.12.951
  9. Terra/Aqua MODIS LST와 기온과의 상관성 분석: 한파 및 폭염 발생 기간을 중심으로 vol.22, pp.4, 2019, https://doi.org/10.11108/kagis.2019.22.4.197
  10. Drought Risk Assessment for Upland Crops using Satellite-derived Evapotranspiration and Soil Available Water Capacity vol.21, pp.1, 2015, https://doi.org/10.9798/kosham.2021.21.1.25