• Title/Summary/Keyword: energy direction

Search Result 2,138, Processing Time 0.035 seconds

A Study on the Estimation of REC Multiplier for ESS Introduction (ESS 부가 설치형 REC 가중치 산정에 관한 연구)

  • Kim, Kang-Won;Kim, Balho H.
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.106-111
    • /
    • 2014
  • In order to manage the gradual increase of electricity demand, the United States, Japan, and Europe are seeking to achieve overall change of electric power system by introducing solutions such as smart grid. Among these solutions, there are various research projects regarding the Electricity Storage System (ESS), which aims to promote the efficient usage of electricity and grid system of new and renewable energy system. Korean government revised the law by including ESS in new and renewable energy facilities to accelerate ESS deployment. Following the same direction of the government policy, this study suggests methodologies of setting REC weighted value that guarantees investment financial feasibility when new and renewable power producers install ESS.

Analysis of Korea's nuclear R&D priorities based on private Sector's domestic demand using AHP

  • Lee, Yunbaek;Son, Seungwook;Park, Heejun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2660-2666
    • /
    • 2020
  • Korea successfully achieved energy independence in the shortest period of time from being the poorest country in terms of energy 50 years ago through steady development of nuclear technology. In the past, the nuclear industry has been driven through government-centered policy development, public institution-based research, and industrial facility and infrastructure construction. Consequently, South Korea became a nuclear energy powerhouse exporting nuclear power plants to the UAE, surpassing the level of domestic technological independence. However, in recent years, the nuclear industry in Korea has experienced a decline in new plant construction since the Fukushima accident in Japan, which caused changes in public perspectives regarding nuclear power plant operation, more stringent safety standards on the operation of nuclear power plants, and a shift in governmental energy policy. These changes are expected to change the domestic nuclear industry ecosystem. Therefore, in this study, we investigate the priority of technology development investment from the perspective of experts in private nuclear power companies, shifting the focus from government-led nuclear R&D policies. To establish a direction in nuclear technology development, a survey was conducted by applying an analytic hierarchy analysis to experts who have worked in nuclear power plants for more than 15 years. The analysis items of focus were the 3 attributes of strategic importance, urgency, and business feasibility of four major fields related to nuclear energy: nuclear safety, decommissioning, radioactive waste management, and strengthening industrial competitiveness.

Potential wind power generation at Khon Kaen, Thailand

  • Supachai, Polnumtiang;Kiatfa, Tangchaichit
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.385-394
    • /
    • 2022
  • The energy demand of the world is increasing rapidly, mainly using fossil energy, which causes environmental damage. The wind is free and clean energy to solve the environmental problems. Thailand is one of the developing nations, and the majority of its energy is obtained from petroleum, natural gas and coal. The objective of this study is to test the characteristics of wind energy at Khon Kaen in Thailand. The wind measurement tools, the 3-cup anemometers to measure wind speed, and wind vanes to measure wind direction, were mounted on a wind tower mast to record wind data at the heights of 60, 90 and 120 meters above ground level (AGL) for 5 years between January 2012 and December 2016. The results show that the annual mean wind speeds were 3.79, 4.32 and 4.66 m/s, respectively. The highest mean wind speeds occurred in June, August and December, in order, and the lowest occurred in September. The majority of prevailing wind directions were from the North-East and South-West directions. The average annual wind shear coefficient was 0.297. Furthermore, five wind turbines with rated power from 0.85 to 4.5 MW were selected to estimate the wind energy output and it was found that the maximum AEP and CF were achieved from the low cut-in speed and high hub-height wind turbines. This important information will help to develop wind energy applications, such as the plan to produce electricity and the calculation of the wind load that affects tall and large structures.

Technology Competitiveness Analysis of New & Renewable Energy in Major Countries (주요국의 신재생에너지 분야 기술경쟁력 분석 연구)

  • Ha, Su-Jin;Choi, Ji-Hyeok;Oh, Sang Jin
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.72-84
    • /
    • 2022
  • As the threat of climate change escalates, 'net-zero' has become a priority for the international community, and the use of new and renewable energy sources is expected to play a significant role in reaching international carbon neutrality. Here, we evaluate technological competitiveness in terms of implementation and technology by analyzing scientific literature and patents in the new and renewable energy fields of five major countries. For the past 10 years (2009-2019), the most active areas of new and renewable energy research and development have been solar power, wind power, waste, and fuel cells. China is the forerunner in implementation, whereas the United States has the most advanced technology. Portfolio analysis revealed that Korea's fuel cell, the United States' bioenergy, China's waste, Japan's solar and fuel cell, and the European Union's wind power have shown to be in Star Field respectively. Technological competitiveness analysis found that Korea is lagging behind other countries in the new and renewable energy sector, and needs to set a new direction for future carbon-neutral research and development, investment, and policy.

Laser Welding Quality Monitoring with an Optical Fiber System

  • Kim, Jin-Tae;Kim, Do-Hyoung;Chung, Chin-Man;Baik, Sung-Hoon;Park, Seung-Kyu;Kim, Min-Suk
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.193-196
    • /
    • 2003
  • We have developed a laser welding monitoring system to monitor laser welding process conditions such as sample feed rate, laser focal position, and laser power. A 2 ㎾ Nd:YAG CW laser beam has been applied to the welding of a stainless steel plate (SUS306) to investigate the welding monitoring. Theradiation signal from the weld pool was guided back through the focusing optics and the laser delivery fiber, and measured by a photo detector. By changing the focus of the laser beam along the z-direction, the penetration depth of the welding material has been measured. That shows the penetration depth depends on the frequency fluctuations of the plume signals which can be used in welding quality control.

How to Improve Usability of Building Energy Simulation for the Integrated Design Process - Based on Practitioner Survey and Design Process Comparison - (에너지 절약형 건물의 통합설계 확산을 위한 시뮬레이션 사용성 개선 방향 - 실무자 설문과 설계 프로세스 비교 및 분석을 중심으로 -)

  • Kim, Sean Hay
    • KIEAE Journal
    • /
    • v.15 no.6
    • /
    • pp.47-56
    • /
    • 2015
  • Purpose and Method: Despite benefits of building energy simulations, practitioners seem to be reluctant to use simulations for design decision making. By means of survey and interviews, this study aims to investigate domestic hindrance against increasing simulation usability, and to collect user requirement to enhance technical functionality of the simulation. Also this study compares the Information Sharing Workflow by Stantec and general domestic design process in order to identify a direction of the Integrated Design Process. Result: Finally this study wraps up with suggestions of how simulation functionality and use protocol should be in order to satisfy user requirement and also to gather more users.

Second order VOF convection model in curvilinear coordinates

  • Kim, Seong-O.;Hwang, Young-dong;Kim, Young-In.;Chang, Moon-Hee
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.392-399
    • /
    • 1997
  • An approximation technique was developed for the simulation of free surface flows in non-orthogonal coordinates. The main idea of this approach is to approximate VOF by the second order linear equation in the transformed domain on the assumption that the continuity of free surface would be maintained. The method was justified through a set of numerical test to examine if its original shape could be maintained when the circles are convected in uniform velocity in horizontal direction in curvilinear coordinates. Finally a simple problem was solved by applying the method to CFX4.1 general purpose CFDS code.

  • PDF

Directionally Transparent Energy Bounding Approach for Multiple Degree-of-Freedom Haptic Interaction

  • Kim, Jae-Ha;Kim, Jong-Phil;Seo, Chang-Hoon;Ryu, Je-Ha
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.2068-2071
    • /
    • 2009
  • This paper presents a multiple degree-of-freedom (dof) energy bounding approach (EBA) to enhance directional transparency while guaranteeing stability for multiple-dof haptic interaction. It was observed that the passivity condition for multiple ports may lead to some oscillatory limit cycle behaviors in some coordinate directions even though the total sum of energy flow-in is positive, meaning that the system is passive. The passivity condition, therefore, needs to be applied to each coordinate in order to avoid oscillatory behavior by keeping each energy flow-in always positive. For guaranteeing passivity, which in turn, stability in each coordinates, the EBA is applied. For multiple-dof haptic interaction, however, the EBA in each coordinate may distort the direction of the force vector to be rendered since the EBA may cut down the magnitude of the force and torque vectors to be rendered in order to ensure the passivity. For avoiding this problem, a simple projection method is presented. The validity of the proposed algorithm is shown by several experiments.

  • PDF

The Study on Prediction about the Optimal Installation Angle of Photovoltaic System (태양광 발전 시스템의 최적 설치 각도 예측에 관한 연구)

  • Kim, Jung-Hwan;Yu, Gwon-Jong;So, Jung-Hun;Cha, Han-Ju;Yu, Byung-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1092_1093
    • /
    • 2009
  • The measured solar radiation on tilted surfaces by all directions has been widely used as important solar radiation data in installing photovoltaic system. The photovoltaic systems is much affected by angle and direction of incident rays. The results obtained in this research could be used in installing optimal photovoltaic systems.

  • PDF

A LMR Core Thermal-Hydraulics Code Based on the ENERGY Model

  • Yang, Won-Sik
    • Nuclear Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.406-416
    • /
    • 1997
  • A computational method is developed for predicting the steady-state temperature field in an LMR core. Detailed core-wide coolant temperature profiles are efficiently calculated using the simplified energy equation mixing model[1] and the subchannel analysis method. The $\theta$-method is employed for discretizing the energy equations in the axial direction. The interassembly coupling is achieved by interassembly gap flow. Cladding and fuel temperatures are calculated with the one-dimensional conduction model and temperature integrals of conductivities. The accuracy of the method is tested by performing several benchmark calculations for too LMR problems. The results indicate that the accuracy is comparable to the other methods based on ENERGY model. It is also shown that the implicit scheme for the axial discretization is more efficient than the explicit scheme.

  • PDF