• Title/Summary/Keyword: energy concept approach

Search Result 184, Processing Time 0.03 seconds

A low damage and ductile rocking timber wall with passive energy dissipation devices

  • Loo, Wei Yuen;Quenneville, Pierre;Chouw, Nawawi
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.127-143
    • /
    • 2015
  • In conventional seismic design, structures are assumed to be fixed at the base. To reduce the impact of earthquake loading, while at the same time providing an economically feasible structure, minor damage is tolerated in the form of controlled plastic hinging at predefined locations in the structure. Uplift is traditionally not permitted because of concerns that it would lead to collapse. However, observations of damage to structures that have been through major earthquakes reveal that partial and temporary uplift of structures can be beneficial in many cases. Allowing a structure to move as a rigid body is in fact one way to limit activated seismic forces that could lead to severe inelastic deformations. To further reduce the induced seismic energy, slip-friction connectors could be installed to act both as hold-downs resisting overturning and as contributors to structural damping. This paper reviews recent research on the concept, with a focus on timber shear walls. A novel approach used to achieve the desired sliding threshold in the slip-friction connectors is described. The wall uplifts when this threshold is reached, thereby imparting ductility to the structure. To resist base shear an innovative shear key was developed. Recent research confirms that the proposed system of timber wall, shear key, and slip-friction connectors, are feasible as a ductile and low-damage structural solution. Additional numerical studies explore the interaction between vertical load and slip-friction connector strength, and how this influences both the energy dissipation and self-centring capabilities of the rocking structure.

Application and optimal design of the bionic guide vane to improve the safety serve performances of the reactor coolant pump

  • Liu, Haoran;Wang, Xiaofang;Lu, Yeming;Yan, Yongqi;Zhao, Wei;Wu, Xiaocui;Zhang, Zhigang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2491-2509
    • /
    • 2022
  • As an important device in the nuclear island, the nuclear coolant pump can continuously provide power for medium circulation. The vane is one of the stationary parts in the nuclear coolant pump, which is installed between the impeller and the casing. The shape of the vane plays a significant role in the pump's overall performance and stability which are the important indicators during the safety serve process. Hence, the bionic concept is firstly applied into the design process of the vane to improve the performance of the nuclear coolant pump. Taking the scaled high-performance hydraulic model (on a scale of 1:2.5) of the coolant pump as the reference, a united bionic design approach is proposed for the unique structure of the guide vane of the nuclear coolant pump. Then, a new optimization design platform is established to output the optimal bionic vane. Finally, the comparative results and the corresponding mechanism are analyzed. The conclusions can be gotten as: (1) four parameters are introduced to configure the shape of the bionic blade, the significance of each parameter is herein demonstrated; (2) the optimal bionic vane is successfully obtained by the optimization design platform, the efficiency performance and the head performance of which can be improved by 1.6% and 1.27% respectively; (3) when compared to the original vane, the optimized bionic vane can improve the inner flow characteristics, namely, it can reduce the flow loss and decrease the pressure pulsation amplitude; (4) through the mechanism analysis, it can be found out that the bionic structure can induce the spanwise velocity and the vortices, which can reduce drag and suppress the boundary layer separation.

Study of the mechanical properties and effects of particles for oxide dispersion strengthened Zircaloy-4 via a 3D representative volume element model

  • Kim, Dong-Hyun;Hong, Jong-Dae;Kim, Hyochan;Kim, Jaeyong;Kim, Hak-Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1549-1559
    • /
    • 2022
  • As an accident tolerant fuel (ATF) concept, oxide dispersion strengthened Zircaloy-4 (ODS Zry-4) cladding has been developed to enhance the mechanical properties of cladding using laser processing technology. In this study, a simulation technique was established to investigate the mechanical properties and effects of Y2O3 particles for the ODS Zry-4. A 3D representative volume element (RVE) model was developed considering the parameters of the size, shape, distribution and volume fraction (VF) of the Y2O3 particles. From the 3D RVE model, the Young's modulus, coefficient of thermal expansion (CTE) and creep strain rate of the ODS Zry-4 were effectively calculated. It was observed that the VF of Y2O3 particles had a significant effect on the aforementioned mechanical properties. In addition, the predicted properties of ODS Zry-4 were applied to a simulation model to investigate cladding deformation under a transient condition. The ODS Zry-4 cladding showed better performance, such as a delay in large deformation compared to Zry-4 cladding, which was also found experimentally. Accordingly, it is expected that the simulation approach developed here can be efficiently employed to predict more properties and to provide useful information with which to improve ODS Zry-4.

Active VM Consolidation for Cloud Data Centers under Energy Saving Approach

  • Saxena, Shailesh;Khan, Mohammad Zubair;Singh, Ravendra;Noorwali, Abdulfattah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.345-353
    • /
    • 2021
  • Cloud computing represent a new era of computing that's forms through the combination of service-oriented architecture (SOA), Internet and grid computing with virtualization technology. Virtualization is a concept through which every cloud is enable to provide on-demand services to the users. Most IT service provider adopt cloud based services for their users to meet the high demand of computation, as it is most flexible, reliable and scalable technology. Energy based performance tradeoff become the main challenge in cloud computing, as its acceptance and popularity increases day by day. Cloud data centers required a huge amount of power supply to the virtualization of servers for maintain on- demand high computing. High power demand increase the energy cost of service providers as well as it also harm the environment through the emission of CO2. An optimization of cloud computing based on energy-performance tradeoff is required to obtain the balance between energy saving and QoS (quality of services) policies of cloud. A study about power usage of resources in cloud data centers based on workload assign to them, says that an idle server consume near about 50% of its peak utilization power [1]. Therefore, more number of underutilized servers in any cloud data center is responsible to reduce the energy performance tradeoff. To handle this issue, a lots of research proposed as energy efficient algorithms for minimize the consumption of energy and also maintain the SLA (service level agreement) at a satisfactory level. VM (virtual machine) consolidation is one such technique that ensured about the balance of energy based SLA. In the scope of this paper, we explore reinforcement with fuzzy logic (RFL) for VM consolidation to achieve energy based SLA. In this proposed RFL based active VM consolidation, the primary objective is to manage physical server (PS) nodes in order to avoid over-utilized and under-utilized, and to optimize the placement of VMs. A dynamic threshold (based on RFL) is proposed for over-utilized PS detection. For over-utilized PS, a VM selection policy based on fuzzy logic is proposed, which selects VM for migration to maintain the balance of SLA. Additionally, it incorporate VM placement policy through categorization of non-overutilized servers as- balanced, under-utilized and critical. CloudSim toolkit is used to simulate the proposed work on real-world work load traces of CoMon Project define by PlanetLab. Simulation results shows that the proposed policies is most energy efficient compared to others in terms of reduction in both electricity usage and SLA violation.

A Literature Review for Approach of Oriental Nursing (한방간호접근을 위한 이론적 고찰)

  • 강현숙
    • Journal of Korean Academy of Nursing
    • /
    • v.23 no.1
    • /
    • pp.118-129
    • /
    • 1993
  • In order to approach the nursing care of clients who are using oriental medicine and to understand the perception of the client who uses oriental medicine practices and the need to develop a model of nursing related to oriental medicine it is important to examine the major nursing concepts as they are found in oriental medicine and as they are differently defined according to the basic thought, theory and philosophical perspectives between East and West. Oriental medicine developed based on Sung Confucianism the teachings of Chut-zu, especially Tai-Chi-Tu Shuo and energy thought which are similar to traditional Korean Sasang Constitutional medicine. The basic theory on which oriental medicine is build is the theory of the five elements of Yin / Eum-Yang Theory(cosmic dual forces) and Meridian Theory. The most important attribute of Yin Yang is the concept of duality, confrontation and dependence, within Yin Yang but which do not exist separately. That is, the universe is a vast, indivisible entity within which all things exist in harmonious interdependence and balance. Harmony is achieved only when the two primorial forces, Yin and Yang, are brought into perfect balance. Each is contained within the other and there is a continuing interchange between the two. This also applies to the human body including human health which is defined as balanced harmony. The most universal connection of Yin and Yang is found in the universe where the five elements of life, fire, water, earth, wood and metal can be explained as having either Yin or Yang and therefore being in a state of connectedness but systematically circulating between the two, that is essentalilly one (the control of the unified ) or as coexistant poles of individual wholes (the pluralism of Yin Yang Theory) so that it is all unified(balanced) in the Great Absoulte. Human beings also maintain a balance of Yin and Yang in the five elements and this relationship is very important in approaching ·oriental medicine, The meridians are the channels in the body through which the life force flow throughout the body. In oriental medicine the meridians are seen as the railroad, the acupuncture points on the meridians as the stations and energy as the train. In the normal healthy organism, all are maintained in balance and in a contiuous circulation of energy. illness is the result of the energy flow becoming disarranged. Although practitioners of oriental medicine approach the client differently than do practitioners of Western medicine and their method of examining the patient is different, the basic objectives of the examination are the same for practitioners of both types of medicine. Therefore if each could be used to supplement the defiencies in the other and achieve a harmonious cooperation between the two, a higher level of care which is culturally appropriate to korean culture could be achieved. The traditional korean concept of health is a naturalistic view which emphasizes being in harmony with nature. Any manifestation of disease is considered a sign that the body is in a state of disequilibrium and is thus no longer in harmony with the universe. The wholistic view of the world held by practitioners of oriental medicine can be used by nursing in the development of a world view of nursing in which the human being is seen within the macrocosm as part of the natural phenomenon of the universe and but also as a microcosm of the universe, a universe which is a vast and indivisible entity within which all things exist in harmonious interdependence and balance. Interaction between human beings and their environment and the relationship of this interaction to health are concepts that are also found in nursing. Nursing views human brings, not as an accumulation of separate cells and organs but, as unified wholes interacted in very close relationship nth their environment. Nursing also maintains a view of human beings in which emphasis is placed on the role of the mind in explaining the concepts of harmony and balance in health. Although there are differences between oriental medicine and nursing in approaches to clients, the basic point of view and philosophy have many fundamental similarites. An understanding of the basic thought and philosophy of oriental medicine if applied to nursing, would allow for the development, not only of nursing related to oriental medicine, but of a nursing theory appropriate to the korean context.

  • PDF

Derivation of Intervention levels for Protection of the Public in a Radiological Emergency in Korea (주민보호조치를 위한 국내 방사선비상 개입준위 산출)

  • Lee, Jong-Tai;Lee, Goan-Yup;Khang, Byung-Oui;Oh, Ki-Hoon;Kim, Chang-Kyu
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.4
    • /
    • pp.357-365
    • /
    • 2001
  • Intervention levels for protection of the public in a radiological emergency are theoretically derived by the cost-benefit approach with the concept of justification and optimization. Intervention levels on the sheltering, evacuation, temporary relocation and permanent resettlement for protection of the public are estimated with the cost to protective countermeasures and the value from dose averted which are the site specific parameters. As a result, it is confirmed that IAEA guidelines for intervention levels are applicable to the radiological emergency in Korea. Optimum ranges of 5 - 10 mSv/2days for sheltering, 25 - 130 mSv/week for evacuation, 15 - 90 mSv/month lot temporary relocation and 600 - 3,500 mSv/lifetime for permanent resettlement for intervention levels are also provided. The result can be applied as useful data to update intervention levels under the theoretical background in Korea.

  • PDF

An Analysis of Sectoral GHG Emission Intensity from Energy Use in Korea (기후변화 협약 대응을 위한 산업별 온실가스 배출 특성 분석)

  • Chung, Whan-Sam;Tohno, Susumu;Shim, Sang-Yul
    • Journal of Korea Technology Innovation Society
    • /
    • v.11 no.2
    • /
    • pp.264-286
    • /
    • 2008
  • In 2006, the share of energy in Korea amounted to 28% from the total import, 97% from overseas dependency, and 83% for the national Greenhouse Gas (GHG) emission in 2004. Thus, from the aspects of economical and environmental policies, an energy analysis is very important, for the industry to cope with the imminent pressure for climate change. However, the estimation of GHG gas emissions due to an energy use is still done in a primitive way, whereby each industry's usage is multiplied by coefficients recommended from international organizations in Korea. At this level, it is impossible to formulate the prevailing logic and policies in face of a new paradigm that seeks to force participation of developing countries through so called post-Kyoto Protocol. In this study, a hybrid energy input-output (E-IO) analysis is conducted on the basis of the input-output(IO) table of 2000 issued by the Bank of Korea in 2003. Furthermore, according to economic sectors, emission of the GHG relative to an energy use is characterized. The analysis is accomplished from four points of view as follows: 1) estimating the GHG emission intensity by 96 sectors, 2) measuring the contribution ratio to GHG emissions by 14 energy sources, 3) calculating the emission factor of 3 GHG compounds, and 4) estimating the total amount of national GHG emission. The total amount estimated in this study is compared with a national official statistical number. The approach could be an appropriate model for the recently spreading concept of a Life Cycle Analysis as it analyzes not only a direct GHG emission from a direct energy use but also an associated emission from an indirect use. We expect this model can provide a form for the basis of a future GHG reduction policy making.

  • PDF

The Sasang Constitutional Approach for Health Preservation of Cancer Survivors (암 환자의 양생(養生)에 대한 사상의학적 접근)

  • Park, Sora;Jeon, Hyeonjin;Lee, Sookyung
    • Journal of Sasang Constitutional Medicine
    • /
    • v.28 no.3
    • /
    • pp.233-245
    • /
    • 2016
  • Objectives There is growing interest in the management of cancer survivors due to the increase in long-term survivors. But no literature research focusing on the management of cancer survivors has been done in Sasang Constitutional Medicine despite the superiority in comprehensive management of patients. Therefore, we planned to look into the perspective of health preservation in Sasang Constitutional Medicine.Methods We investigated the 『Donguisusebowon-Sasangchobongwon(東醫壽世保元 四象草本卷)』. We classified the contents which might be applicable to cancer patients. After classifying, we compared the contents with clinical experience and health preservation methods of Western Medicine.Results and Conclusions The health preservation is mentioned mostly as Joyang(調養). The Sasang Constitutional Medicine classifies the lives of people in 8 stages. Depending on the stages, there is a difference in the prognosis and management. Cancer patients can be regarded as being in the stages of Noeok(牢獄) and Wiegyeong(危傾). In these stages, patient's health preservation is important. In order to achieve long-term survival and to prevent disease progression, it is important to maintain requisite energy(保命之主). The attitudes that patient must have are simplicity(簡約), attentiveness(勤幹), vigilance(警戒), knowledgeability(聞見) for keeping one's own health and fulfilling the social obligations of human relations. The concept of health preservation in Sasang Constitutional Medicine covers the wide range of health. But detailed methods for patients to understand and practice are lacking. Moreover, it is hard for cancer patients to access the information. Therefore, further researches should be done to make the concept more specific and easy to access for cancer patients.

Jumpstarting the Digital Revolution: Exploring Smart City Architecture and Themes

  • Maha Alqahtani;Kholod M. Alqahtani
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.110-122
    • /
    • 2023
  • Over the last few decades, various innovative technologies have emerged that have significantly contributed to making life easier for humans. Various information and communication technologies (ITCs) have emerged as a result of the global technological revolution, including big data, IoT, 4G and 5G networks, cloud computing, mobile computing, and artificial intelligence. These technologies have been adopted in urban planning and development, which gave rise to the concept of smart cities in the 1990s. A smart city is a type of city that uses ITCs to exchange and share information to enhance the quality of services for its citizens. With the global population increasing at unprecedented levels, cities are overwhelmed with a myriad of challenges, such as the energy crisis, environmental pollution, sanitation and sewage challenges, and water quality issues, and therefore, have become a convergence point of economic, social, and environmental risks. The concept of a smart city is a multidisciplinary, unified approach that has been adopted by governments and municipalities worldwide to overcome these challenges. Though challenging, this transformation is essential for cities with differing technological and social features, which all have the potential to determine the success or failure of the digital transformation of cities into smart cities. In recent years, researchers, businesses, and the government have all turned their attention to the emerging field of smart cities. Accordingly, this paper aims to represent a thorough understanding of the movement toward smart cities. The key themes identified are smart city definitions and concepts, smart city dimensions, and smart city architecture of different layers. Furthermore, this article discusses the challenges and some examples of smart cities.

Assessing the resilience of urban water management to climate change

  • James A. Griffiths
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.32-32
    • /
    • 2023
  • Incidences of urban flood and extreme heat waves (due to the urban heat island effect) are expected to increase in New Zealand under future climate change (IPCC 2022; MfE 2020). Increasingly, the mitigation of such events will depend on the resilience of a range Nature-Based Solutions (NBS) used in Sustainable Urban Drainage Schemes (SUDS), or Water Sensitive Urban Design (WSUD) (Jamei and Tapper 2019; Johnson et al 2021). Understanding the impact of changing precipitation and temperature regimes due climate change is therefore critical to the long-term resilience of such urban infrastructure and design. Cuthbert et al (2022) have assessed the trade-offs between the water retention and cooling benefits of different urban greening methods (such as WSUD) relative to global location and climate. Using the Budyko water-energy balance framework (Budyko 1974), they demonstrated that the potential for water infiltration and storage (thus flood mitigation) was greater where potential evaporation is high relative to precipitation. Similarly, they found that the potential for mitigation of drought conditions was greater in cooler environments. Subsequently, Jaramillo et al. (2022) have illustrated the locations worldwide that will deviate from their current Budyko curve characteristic under climate change scenarios, as the relationship between actual evapotranspiration (AET) and potential evapotranspiration (PET) changes relative to precipitation. Using the above approach we assess the impact of future climate change on the urban water-energy balance in three contrasting New Zealand cities (Auckland, Wellington, Christchurch and Invercargill). The variation in Budyko curve characteristics is then used to describe expected changes in water storage and cooling potential in each urban area as a result of climate change. The implications of the results are then considered with respect to existing WSUD guidelines according to both the current and future climate in each location. It was concluded that calculation of Budyko curve deviation due to climate change could be calculated for any location and land-use type combination in New Zealand and could therefore be used to advance the general understanding of climate change impacts. Moreover, the approach could be used to better define the concept of urban infrastructure resilience and contribute to a better understanding of Budyko curve dynamics under climate change (questions raised by Berghuijs et al 2020)). Whilst this knowledge will assist in implementation of national climate change adaptation (MfE, 2022; UNEP, 2022) and improve climate resilience in urban areas in New Zealand, the approach could be repeated for any global location for which present and future mean precipitation and temperature conditions are known.

  • PDF