• Title/Summary/Keyword: energy balance method

Search Result 412, Processing Time 0.026 seconds

Analysis of Thermal Performance in Roof Evaporative Cooling System (지붕 증발냉각시스템의 열성능 해석)

  • Shin, U.C.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.3
    • /
    • pp.9-18
    • /
    • 2001
  • This paper reports on an theoretical study of heat transfer from evaporative cooling system by the flow of recirculated water over the roof. In this system tile water is distributed at the top of the pitched roof, collected at the bottom by a gutter and recirculated by a pump. To analysis the system, the energy balance equations are developed and solved using a finite difference method. The calculation results show a good agreement with the measured ones obtained from our experiment. Based on the results, it was seen that the roof-evaporative cooling system reduced the heat flux significantly compared with the conventional roof structure even in the hot-humid summer climate of Korea.

  • PDF

The theoretical analysis of characteristics for temperatures in cw $CO_{2}$ laser (CW $CO_{2}$ 레이저의 온도 특성에 관한 해석)

  • Kang, Dong-Heon;Park, Deug-Il;Lee, Choo-Hie
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.465-468
    • /
    • 1988
  • The output power is dependent of the vibrational level temperatures and wall temperature of the discharge tube in cw $CO_{2}$ lasers. The method postulates the introduction of a vibrational temperatures Ti for each vibrational mode. The vibrational and wall temperature are dertermined by the equations of the vibrational energy balance and thermal conductivity.

  • PDF

EEC-FM: Energy Efficient Clustering based on Firefly and Midpoint Algorithms in Wireless Sensor Network

  • Daniel, Ravuri;Rao, Kuda Nageswara
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3683-3703
    • /
    • 2018
  • Wireless sensor networks (WSNs) consist of set of sensor nodes. These sensor nodes are deployed in unattended area which are able to sense, process and transmit data to the base station (BS). One of the primary issues of WSN is energy efficiency. In many existing clustering approaches, initial centroids of cluster heads (CHs) are chosen randomly and they form unbalanced clusters, results more energy consumption. In this paper, an energy efficient clustering protocol to prevent unbalanced clusters based on firefly and midpoint algorithms called EEC-FM has been proposed, where midpoint algorithm is used for initial centroid of CHs selection and firefly is used for cluster formation. Using residual energy and Euclidean distance as the parameters for appropriate cluster formation of the proposed approach produces balanced clusters to eventually balance the load of CHs and improve the network lifetime. Simulation result shows that the proposed method outperforms LEACH-B, BPK-means, Park's approach, Mk-means, and EECPK-means with respect to balancing of clusters, energy efficiency and network lifetime parameters. Simulation result also demonstrate that the proposed approach, EEC-FM protocol is 45% better than LEACH-B, 17.8% better than BPK-means protocol, 12.5% better than Park's approach, 9.1% better than Mk-means, and 5.8% better than EECPK-means protocol with respect to the parameter half energy consumption (HEC).

Development on Fuel Economy Test Method for Hydrogen Fuel Cell Vehicles (수소연료전지자동차 연료소비율 평가기술 개발에 관한 연구)

  • Lim, Jong-Soon;Lee, Hyun-Woo;Hong, Yun-Seok;Lee, Kwang-Bum;Yong, Gee-Joong;Kwon, Hae-Boung
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.3
    • /
    • pp.207-213
    • /
    • 2010
  • Fuel consumption measurement of hydrogen fuel cell vehicle is considerably different from internal combustion engine vehicle such as carbon balance method. A practical method of fuel consumption measurement has been developed for hydrogen fuel cell vehicles. There are three method of hydrogen fuel consumption testing, gravimetric, PVT (pressure, volume and temperature), and mass flow, all of which necessitate physical measurements of the fuel supply. The purpose of this research is to measure the fuel consumption of hydrogen fuel cell vehicles on chassis-dynamometer and to give information when the research is intended to develop test method to measure hydrogen fuel economy.

Enhanced Particle Swarm Optimization for Short-Term Non-Convex Economic Scheduling of Hydrothermal Energy Systems

  • Jadoun, Vinay Kumar;Gupta, Nikhil;Niazi, K. R.;Swarnkar, Anil
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.1940-1949
    • /
    • 2015
  • This paper presents an Enhanced Particle Swarm Optimization (EPSO) to solve short-term hydrothermal scheduling (STHS) problem with non-convex fuel cost function and a variety of operational constraints related to hydro and thermal units. The operators of the conventional PSO are dynamically controlled using exponential functions for better exploration and exploitation of the search space. The overall methodology efficiently regulates the velocity of particles during their flight and results in substantial improvement in the conventional PSO. The effectiveness of the proposed method has been tested for STHS of two standard test generating systems while considering several operational constraints like system power balance constraints, power generation limit constraints, reservoir storage volume limit constraints, water discharge rate limit constraints, water dynamic balance constraints, initial and end reservoir storage volume limit constraints, valve-point loading effect, etc. The application results show that the proposed EPSO method is capable to solve the hard combinatorial constraint optimization problems very efficiently.

Heat Transfer Analysis on the Rapid Solidification Process of Atomized Metal Droplets (분무된 금속액적의 급속응고과정에 관한 열전달 해석)

  • 안종선;박병규;안상호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2404-2412
    • /
    • 1994
  • A mathematical model has been developed for predicting kinematic, thermal, and solidification histories of atomized droplets during flight. Liquid droplet convective cooling, recalescence, equilibrium-state solidification, and solid-phase cooling were taken into account in the analysis of the solidification process. The spherical shell model was adopted where the heterogeneous nucleation is initiated from the whole surface of a droplet. The growth rate of the solid-liquid interface was determined from the theory of crystal growth kinetics with undercooling caused by the rapid solidification. The solid fraction after recalescence was obtained by using the integral method. The thermal responses of atomized droplets to gas velocity, particle size variation, and degree of undercooling were investigated through the parametric studies. It is possible to evaluate the solid fraction of the droplet according to flight distance and time in terms of a dimensionless parameter derived from the overall energy balance of the system. It is also found that the solid fraction at the end of recalescence is not dependent on the droplet size and nozzle exit velocity but on the degree of subcooling.

Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix

  • Besseghier, Abderrahmane;Heireche, Houari;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Benzair, Abdelnour
    • Advances in nano research
    • /
    • v.3 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • In the current study, the nonlinear vibration properties of an embedded zigzag single-walled carbon nanotube (SWCNT) are investigated. Winkler-type model is used to simulate the interaction of the zigzag SWCNTs with a surrounding elastic medium. The relation between deflection amplitudes and resonant frequencies of the SWCNT is derived through harmonic balance method. The equivalent Young's modulus and shear modulus for zigzag SWCNT are derived using an energy-equivalent model. The amplitude - frequency curves for large-amplitude vibrations are graphically illustrated. The simulation results show that the chirality of zigzag carbon nanolube as well as surrounding elastic medium play more important roles in the nonlinear vibration of the single-walled carbon nanotubes.

Simple Design Method of the Engine Enclosure Considering Cooling and Noise Reduction (냉각과 소음을 고려한 엔진 차폐 구조의 간편한 설계 방법)

  • 최재웅;김관엽;이희준
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.184-188
    • /
    • 1999
  • Noise regulation of heavy construction machinery is getting stricter: 3 dB per every 4 year in European community. To meet this requirement many engineers have adopted the enclosing structures with thick absorbing materials and small opening, This increases internal temperature of the enclosure which have engine systems such as electric equipment that are vulnerable to heat, and engine block and muffler that can be regarded as heat sources. So noise control engineers have to consider a coupling problem: combining heat balance and noise reduction. This paper describes this approach by introducing simple heat transfer theory and SEA. The enclosing system of the loader whose enclosing structure consists of two rooms is investigated to show the validity of this method. The results represent that the simple heat transfer theory can be useful to estimate cooling performance when it is linked together by the back pressure theory in duct system. and the radiated noise can also be estimated by the SEA. Therefore a designer can use these approaches to define the opening ratio of an enclosure and the mass flow rate of air considering radiating noise.

  • PDF

Optimization of Water Reuse Network Using Water Pinch Method in Duplex Board Mill (워터핀치(Water Pinch)기법을 적용한 백판지공장의 공정수 재이용 최적화)

  • Ryu Jeong-Yong;Park Dae-Sik;Kim Yong-Hwan;Song Bong-Keun;Seo Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.4 s.112
    • /
    • pp.44-51
    • /
    • 2005
  • Paper mills use and discharge lots of water. And so now the papermaking industry could be classified into major water consuming industry In order to analyze the process water network and to establish the mass, water balance of duplex board mill, computer aided simulation was made using water pinch method. Based on the pinch analysis results, reuse of process water, after regenerating by microfilter as much as $140\;m^3/hr$, could be suggested without significant accumulation of contaminants in process water. According to this suggestion about $3000\;m^3/day$ of recycled process water could be sub stituted by regenerated water and consequently $30\%$ of energy cost is expected to be reduced.

A Study on the Limitation and Improvement of Simple Window Model applied to EnergyPlus (EnergyPlus에 적용된 Simple Window Model의 한계와 개선에 관한 연구)

  • Kim, Tae Ho;Ko, Sung Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.515-529
    • /
    • 2017
  • EnergyPlus, which is widely used in various fields, provides Simple Window Model, a window model that can be used practically. However, the results of building load using the model are different from those of the standard model. The main cause of the deviation by Simple Window Model was analyzed to be due to the assumption that all windows were considered as single layer. The purpose of this study is to propose a window model that improves the cause of deviation by Simple Window Model and can be easily calculated from the algebraic relations. The proposed window model solved the heat balance equation algebraically by using seven window characteristic coefficients. The coefficient relationships consisted of the heat transmission coefficient and solar heat gain coefficient as input parameters make practical use and calculation possible. As a result of comparing the deviation between each window model by implementing the dynamic analysis method, the proposed window model showed that the deviation of the total heating/cooling energy consumption was reduced to 1/3 compared to Simple Window Model for one year. Although the maximum energy consumption did not show any significant improvement, the indoor temperature evaluation showed significantly reduced deviation.