DOI QR코드

DOI QR Code

Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix

  • Besseghier, Abderrahmane (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Heireche, Houari (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Benzair, Abdelnour (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes)
  • Received : 2015.01.12
  • Accepted : 2015.03.29
  • Published : 2015.03.25

Abstract

In the current study, the nonlinear vibration properties of an embedded zigzag single-walled carbon nanotube (SWCNT) are investigated. Winkler-type model is used to simulate the interaction of the zigzag SWCNTs with a surrounding elastic medium. The relation between deflection amplitudes and resonant frequencies of the SWCNT is derived through harmonic balance method. The equivalent Young's modulus and shear modulus for zigzag SWCNT are derived using an energy-equivalent model. The amplitude - frequency curves for large-amplitude vibrations are graphically illustrated. The simulation results show that the chirality of zigzag carbon nanolube as well as surrounding elastic medium play more important roles in the nonlinear vibration of the single-walled carbon nanotubes.

Keywords

Acknowledgement

Supported by : Algerian National Thematic Agency of Research in Science and Technology (ATRST), university of Sidi Bel Abbes (UDL SBA)

References

  1. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions" J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  2. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  3. Amin, S.S., Dalir, H. and Farshidianfar, A. (2009), "Carbon nanotube-reinforced composites: frequency analysis theories based on the matrix stiffness", Comput. Mech., 43, 515-524. https://doi.org/10.1007/s00466-008-0326-7
  4. Baghdadi, H., Tounsi, A., Zidour, M. and Benzair, A. (2014), "Thermal effect on vibration characteristics of armchair and zigzag single-walled carbon nanotubes using nonlocal parabolic beam theory", Full. Nanotub. Carbon Nanostruct., 23, 266-272.
  5. Behfar, K. and Naghdabadi, R. (2005), "Nanoscale vibrational analysis of a multi-layered grapheme sheet embedded in an elastic medium", Compos. Sci. Technol., 65(7-8), 1159-1164. https://doi.org/10.1016/j.compscitech.2004.11.011
  6. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  7. Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014), "Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes", Compos. Part B: Eng., 57, 21-24. https://doi.org/10.1016/j.compositesb.2013.08.020
  8. Benzair, A., Tounsi, A., Besseghier, A., Heireche, H., Moulay, N. and Boumia, L. (2008), "The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", J. Phys. D: Appl. Phys., 41(22), 225404. https://doi.org/10.1088/0022-3727/41/22/225404
  9. Besseghier, A., Tounsi, A., Houari, M.S.A., Benzair, A., Boumia, L. and Heireche, H. (2011), "Thermal effect on wave propagation in double-walled carbon nanotubes embedded in a polymer matrix using nonlocal elasticity", Physica E, 43, 1379-1386. https://doi.org/10.1016/j.physe.2011.03.008
  10. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14, 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  11. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  12. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A., (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  13. Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), "A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates", Meccanica, 49, 795-810. https://doi.org/10.1007/s11012-013-9827-3
  14. Fu, Y.M., Hong, J.W. and Wang, X.Q. (2006), "Analysis of nonlinear vibration for embedded carbon nanotubes", J. Sound Vib., 296, 746-756. https://doi.org/10.1016/j.jsv.2006.02.024
  15. Fu, Y.M., Bi, R.G. and Zhang, P. (2009), "Nonlinear dynamic instability of double-walled carbon nanotubes under periodic excitation", Acta Mech. Solid Sin., 22(3), 206-212. https://doi.org/10.1016/S0894-9166(09)60267-6
  16. Gafour, Y., Zidour, M., Tounsi, A., Heireche, H. and Semmah, A. (2013), "Sound wave propagation in zigzag double-walled carbon nanotubes embedded in an elastic medium using nonlocal elasticity theory", Physica E, 48, 118-123. https://doi.org/10.1016/j.physe.2012.11.006
  17. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., ASCE, 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  18. Heireche, H, Tounsi, A, Benzair, A, Maachou, M. and Adda Bedia, EA. (2008a), "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E., 40, 2791-2799. https://doi.org/10.1016/j.physe.2007.12.021
  19. Heireche, H., Tounsi, A., Benzair, A. and Mechab, I. (2008b), "Sound wave propagation in single-carbon nanotubes with initial axial stress", J. Appl. Phys., 104, 014301. https://doi.org/10.1063/1.2949274
  20. Heireche, H., Tounsi, A. and Benzair, A. (2008c), "Scale eEffect on wave propagation of double-walled carbon nanotubes with initial axial loading", Nanotechnol., 19, 185703. https://doi.org/10.1088/0957-4484/19/18/185703
  21. Iijima, S. (1991), "Helica microtubes of graphitic carbon", Nature, 354, 56. https://doi.org/10.1038/354056a0
  22. Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Meth., 11(5), 135007.
  23. Lanir, Y. and Fung, Y.C.B. (1972), "Fiber composite columns under compressions", J. Compos. Mater., 6, 387-401. https://doi.org/10.1177/002199837200600315
  24. Mahdavi, M.H., Jiang, L.Y. and Sun, X. (2009), "Nonlinear vibration of a single-walled carbon nanotube embedded in a polymer matrix aroused by interfacial van der Waals forces", J. Appl. Phys., 106, 114309. https://doi.org/10.1063/1.3266174
  25. Murmu, T. and Adhikari, S. (2011), "Nonlocal vibration of carbon nanotubes with attached buckyballs at tip", Mech. Res. Commun., 38, 62. https://doi.org/10.1016/j.mechrescom.2010.11.004
  26. Naceri, M., Zidour, M., Semmah, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2011), "Sound wave propagation in armchair single walled carbon nanotubes under thermal environment", J. Appl. Phys., 110, 124322. https://doi.org/10.1063/1.3671636
  27. Ould Larbi, L., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Bas. Des. Struct. Mach., 41, 421-433. https://doi.org/10.1080/15397734.2013.763713
  28. Pantano, A., Boyce, M.C. and Parks, D.M. (2003), "Nonlinear structural mechanics based modeling of carbon nanotube deformation", Phys. Rev. Lett., 91(14), 145501. https://doi.org/10.1103/PhysRevLett.91.145501
  29. Popov, V.N., Doren, V.E.V. and Balkanski, M. (2000), "Elastic properties of single-walled carbon nanotubes", Phys. Rev. B, 61(4), 3078-3084.
  30. Pradhan, S.C. and Mandal, U. (2013), "Finite element analysis of CNTs based on nonlocal elasticity and Timoshenko beam theory including thermal effect", Physica E., 53, 223-232. https://doi.org/10.1016/j.physe.2013.04.029
  31. Semmah, A, Tounsi, A., Zidour, M., Heireche, H. and Naceri, M. (2014), "Effect of chirality on critical buckling temperature of a zigzag single-walled carbon nanotubes using nonlocal continuum theory", Full. Nanotub. Carbon Nanostruct., 23, 518-522.
  32. Sohi, A.N. and Naghdabadi, R. (2007), "Torsional buckling of carbon nanopeapods", Carbon, 45(5), 952-957. https://doi.org/10.1016/j.carbon.2006.12.027
  33. Sun, C. and Liu, K. (2008), "Dynamic torsional buckling of a double-walled carbon nanotube embedded in an elastic medium", Eur. J. Mech. A/Solid., 27(1), 40-49. https://doi.org/10.1016/j.euromechsol.2007.04.002
  34. Tokio, Y. (1995), "Recent development of carbon nanotube", Synth Met., 70, 1511-1518. https://doi.org/10.1016/0379-6779(94)02939-V
  35. Tounsi, A, Heireche, H, Berrabah, HM, Benzair, A. and Boumia, L. (2008), "Effect of small size on wave propagation in double-walled carbon nanotubes under temperature field", J Appl Phys, 104, 104301. https://doi.org/10.1063/1.3018330
  36. Tounsi, A, Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013a), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
  37. Tounsi, A., Semmah, A. and Bousahla, A.A. (2013b), "Thermal buckling behavior of nanobeam using an efficient higher-order nonlocal beam theory", J. Nanomech. Micromech., ASCE, 3(3), 37-42. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000057
  38. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013c), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Tech., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  39. Wu, Y., Zhang, X., Leung, A.Y.T. and Zhong, W. (2006), "An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes", Thin Wall. Struct., 44, 667-676. https://doi.org/10.1016/j.tws.2006.05.003
  40. Xu, K.Y., Guo, X.N. and Ru, C.Q. (2006), "Vibration of a double-walled carbon nanotube aroused by nonlinear intertube van der Waals forces", J. Appl. Phys., 99, 064303. https://doi.org/10.1063/1.2179970
  41. Yoon, J., Ru, C.Q. and Mioduchowski, A. (2003), "Vibration of an embedded multiwall carbon nanotube", Compos. Sci. Tech., 63, 1533-1542. https://doi.org/10.1016/S0266-3538(03)00058-7
  42. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
  43. Zidour, M., Benrahou, K.H., Semmah, A., Naceri, M., Belhadj, H.A., Bakhti, K. and Tounsi, A. (2012), "The thermal effect on vibration of zigzag single walled carbon nanotubes using nonlocal Timoshenko beam theory", Computat. Mater. Sci., 51, 252-260. https://doi.org/10.1016/j.commatsci.2011.07.021
  44. Zidour, M., Daouadji, T.H., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A. and Hadji, L. (2014), "Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal Timoshenko beam theory", Mech. Compos. Mater., 50(1), 95-104. https://doi.org/10.1007/s11029-014-9396-0

Cited by

  1. Effects of physical boundary conditions on the transverse vibration of single-layer graphene sheets vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0337-8
  2. On the bending and stability of nanowire using various HSDTs vol.3, pp.4, 2015, https://doi.org/10.12989/anr.2015.3.4.177
  3. Coupled twist–bending static and dynamic behavior of a curved single-walled carbon nanotube based on nonlocal theory vol.23, pp.7, 2017, https://doi.org/10.1007/s00542-016-2933-0
  4. Analysis of size-dependent mechanical properties of CNTs mass sensor using energy equivalent model vol.246, 2016, https://doi.org/10.1016/j.sna.2016.05.009
  5. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes vol.514, 2017, https://doi.org/10.1016/j.physb.2017.03.030
  6. On the static stability of nonlocal nanobeams using higher-order beam theories vol.4, pp.1, 2016, https://doi.org/10.12989/anr.2016.4.1.051
  7. Thermo-mechanical analysis of FG nanobeam with attached tip mass: an exact solution vol.122, pp.12, 2016, https://doi.org/10.1007/s00339-016-0542-5
  8. Nonlocal vibration analysis of FG nano beams with different boundary conditions vol.4, pp.2, 2016, https://doi.org/10.12989/anr.2016.4.2.085
  9. Free vibration of anisotropic single-walled carbon nanotube based on couple stress theory for different chirality vol.36, pp.3, 2017, https://doi.org/10.1177/0263092317700153
  10. A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation vol.20, pp.2, 2016, https://doi.org/10.12989/scs.2016.20.2.227
  11. An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.329
  12. Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
  13. Thermal effects on nonlocal vibrational characteristics of nanobeams with non-ideal boundary conditions vol.18, pp.6, 2016, https://doi.org/10.12989/sss.2016.18.6.1087
  14. An analytical study on the nonlinear vibration of a double-walled carbon nanotube vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.987
  15. On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams vol.19, pp.5, 2015, https://doi.org/10.12989/scs.2015.19.5.1259
  16. Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory vol.4, pp.1, 2016, https://doi.org/10.12989/anr.2016.4.1.031
  17. A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams vol.40, pp.5-6, 2016, https://doi.org/10.1016/j.apm.2015.11.026
  18. Application of nonlocal strain gradient theory and various shear deformation theories to nonlinear vibration analysis of sandwich nano-beam with FG-CNTRCs face-sheets in electro-thermal environment vol.123, pp.5, 2017, https://doi.org/10.1007/s00339-017-0922-5
  19. Free vibration of symmetric and sigmoid functionally graded nanobeams vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0324-0
  20. Buckling and free vibration of shallow curved micro/nano-beam based on strain gradient theory under thermal loading with temperature-dependent properties vol.123, pp.1, 2017, https://doi.org/10.1007/s00339-016-0591-9
  21. Employing sinusoidal shear deformation plate theory for transient analysis of three layers sandwich nanoplate integrated with piezo-magnetic face-sheets vol.25, pp.11, 2016, https://doi.org/10.1088/0964-1726/25/11/115040
  22. Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
  23. Elastic properties of CNT- and graphene-reinforced nanocomposites using RVE vol.21, pp.5, 2016, https://doi.org/10.12989/scs.2016.21.5.1085
  24. Nonlinear electroelastic vibration analysis of NEMS consisting of double-viscoelastic nanoplates vol.122, pp.10, 2016, https://doi.org/10.1007/s00339-016-0452-6
  25. Critical Buckling Load of Chiral Double-Walled Carbon Nanotubes Embedded in an Elastic Medium vol.53, pp.6, 2018, https://doi.org/10.1007/s11029-018-9708-x
  26. Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams vol.24, pp.11, 2017, https://doi.org/10.1080/15376494.2016.1196795
  27. Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation vol.123, pp.5, 2017, https://doi.org/10.1007/s00339-017-0955-9
  28. Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity vol.3, pp.4, 2015, https://doi.org/10.12989/anr.2015.3.4.193
  29. Dynamic characteristics of temperature-dependent viscoelastic FG nanobeams subjected to 2D-magnetic field under periodic loading vol.123, pp.4, 2017, https://doi.org/10.1007/s00339-017-0829-1
  30. Free vibration investigation of nano mass sensor using differential transformation method vol.123, pp.3, 2017, https://doi.org/10.1007/s00339-017-0796-6
  31. Vibration analysis of functionally graded piezoelectric nanoscale plates by nonlocal elasticity theory: An analytical solution vol.100, 2016, https://doi.org/10.1016/j.spmi.2016.08.046
  32. A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams vol.159, 2017, https://doi.org/10.1016/j.compstruct.2016.09.058
  33. Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
  34. Dynamic modeling of smart shear-deformable heterogeneous piezoelectric nanobeams resting on Winkler–Pasternak foundation vol.122, pp.11, 2016, https://doi.org/10.1007/s00339-016-0466-0
  35. An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
  36. Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.963
  37. Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs vol.153, 2016, https://doi.org/10.1016/j.compstruct.2016.07.013
  38. Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams vol.122, pp.11, 2016, https://doi.org/10.1007/s00339-016-0465-1
  39. Vibration analysis of bonded double-FGM viscoelastic nanoplate systems based on a modified strain gradient theory incorporating surface effects vol.123, pp.3, 2017, https://doi.org/10.1007/s00339-017-0784-x
  40. Bending, buckling and vibration analyses of MSGT microcomposite circular-annular sandwich plate under hydro-thermo-magneto-mechanical loadings using DQM 2017, https://doi.org/10.1080/19475411.2017.1377312
  41. A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates vol.56, pp.2, 2015, https://doi.org/10.12989/sem.2015.56.2.223
  42. Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment vol.7, pp.2, 2016, https://doi.org/10.1080/19475411.2016.1191556
  43. Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.357
  44. A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate vol.168, 2017, https://doi.org/10.1016/j.compstruct.2017.02.090
  45. Influence of magneto-electric environments on size-dependent bending results of three-layer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory 2017, https://doi.org/10.1177/1099636217723186
  46. A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.743
  47. Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam vol.123, pp.1, 2017, https://doi.org/10.1007/s00339-016-0712-5
  48. Multiscale Modeling and Mechanical Properties of Zigzag CNT and Triple-Layer Graphene Sheet Based on Atomic Finite Element Method vol.33, pp.1661-9897, 2015, https://doi.org/10.4028/www.scientific.net/JNanoR.33.92
  49. Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities vol.6, pp.1, 2017, https://doi.org/10.12989/amr.2017.6.1.045
  50. Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model vol.5, pp.1, 2017, https://doi.org/10.12989/anr.2017.5.1.001
  51. Wave propagation in functionally graded beams using various higher-order shear deformation beams theories vol.62, pp.2, 2015, https://doi.org/10.12989/sem.2017.62.2.143
  52. Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory vol.19, pp.6, 2015, https://doi.org/10.12989/sss.2017.19.6.601
  53. Instability analysis of viscoelastic CNTs surrounded by a thermo-elastic foundation vol.63, pp.2, 2017, https://doi.org/10.12989/sem.2017.63.2.171
  54. Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities vol.5, pp.4, 2017, https://doi.org/10.12989/anr.2017.5.4.393
  55. Vibration analysis of carbon nanotubes with multiple cracks in thermal environment vol.6, pp.1, 2015, https://doi.org/10.12989/anr.2018.6.1.057
  56. A new nonlocal HSDT for analysis of stability of single layer graphene sheet vol.6, pp.2, 2015, https://doi.org/10.12989/anr.2018.6.2.147
  57. Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory vol.6, pp.3, 2018, https://doi.org/10.12989/anr.2018.6.3.279
  58. Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure vol.67, pp.6, 2018, https://doi.org/10.12989/sem.2018.67.6.565
  59. Finite strain nonlinear longitudinal vibration of nanorods vol.6, pp.4, 2018, https://doi.org/10.12989/anr.2018.6.4.323
  60. Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress vol.23, pp.2, 2015, https://doi.org/10.12989/sss.2019.23.2.141
  61. Postbuckling of Curved Carbon Nanotubes Using Energy Equivalent Model vol.57, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/jnanor.57.136
  62. Participation Factor and Vibration of Carbon Nanotube with Vacancies vol.57, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/jnanor.57.158
  63. A New Hyperbolic Two-Unknown Beam Model for Bending and Buckling Analysis of a Nonlocal Strain Gradient Nanobeams vol.57, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/jnanor.57.175
  64. Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations vol.6, pp.3, 2019, https://doi.org/10.12989/aas.2019.6.3.207
  65. Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation vol.70, pp.6, 2015, https://doi.org/10.12989/sem.2019.70.6.737
  66. Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment vol.8, pp.3, 2019, https://doi.org/10.12989/amr.2019.8.3.237
  67. Nonlinear forced vibrations of sandwich smart nanobeams with two-phase piezo-magnetic face sheets vol.134, pp.10, 2019, https://doi.org/10.1140/epjp/i2019-12806-8
  68. Size-dependent random vibration analysis of AFM probe with tip mass considering surface viscoelastic effect vol.134, pp.11, 2015, https://doi.org/10.1140/epjp/i2019-12924-3
  69. Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams vol.7, pp.6, 2019, https://doi.org/10.12989/anr.2019.7.6.391
  70. Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity vol.7, pp.6, 2015, https://doi.org/10.12989/anr.2019.7.6.431
  71. An analytical study of vibration in functionally graded piezoelectric nanoplates: nonlocal strain gradient theory vol.40, pp.12, 2015, https://doi.org/10.1007/s10483-019-2545-8
  72. Longitudinal vibration of double nanorod systems using doublet mechanics theory vol.73, pp.1, 2015, https://doi.org/10.12989/sem.2020.73.1.037
  73. Effect of laminate configuration on the free vibration/buckling of FG Graphene/PMMA composites vol.8, pp.2, 2015, https://doi.org/10.12989/anr.2020.8.2.103
  74. Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects vol.7, pp.2, 2015, https://doi.org/10.12989/aas.2020.7.2.169
  75. A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams vol.9, pp.1, 2015, https://doi.org/10.12989/amr.2020.9.1.033
  76. Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.147
  77. Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory vol.8, pp.3, 2015, https://doi.org/10.12989/anr.2020.8.3.191
  78. Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method vol.8, pp.3, 2015, https://doi.org/10.12989/anr.2020.8.3.215
  79. Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM vol.8, pp.4, 2015, https://doi.org/10.12989/anr.2020.8.4.283
  80. Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory vol.35, pp.4, 2015, https://doi.org/10.12989/scs.2020.35.4.545
  81. Nonlinear vibration of smart nonlocal magneto-electro-elastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects vol.25, pp.5, 2015, https://doi.org/10.12989/sss.2020.25.5.619
  82. Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM vol.9, pp.3, 2020, https://doi.org/10.12989/csm.2020.9.3.201
  83. Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force vol.9, pp.1, 2015, https://doi.org/10.12989/anr.2020.9.1.047
  84. Frequency, bending and buckling loads of nanobeams with different cross sections vol.9, pp.2, 2015, https://doi.org/10.12989/anr.2020.9.2.091
  85. Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method vol.76, pp.3, 2015, https://doi.org/10.12989/sem.2020.76.3.413
  86. Nonlinear Behavior of Single Walled Carbon Nanotube Reinforced Aluminium Alloy Beam vol.69, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/jnanor.69.89