• Title/Summary/Keyword: energy balance concept

Search Result 64, Processing Time 0.032 seconds

Energy-based seismic design of structures with buckling-restrained braces

  • Kim, Jinkoo;Choi, Hyunhoon;Chung, Lan
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.437-452
    • /
    • 2004
  • A simplified seismic design procedure for steel structures with buckling-restrained braces (BRB) was proposed based on the energy balance concept and the equal energy assumption. The input seismic energy was estimated from a design spectrum, and the elastic and hysteretic energy were computed using energy balance concept. The size of braces was determined so that the hysteretic energy demand was equal to the hysteretic energy dissipated by the BRB. The validity of using equivalent single-degree-of-freedom systems to estimate seismic input and hysteretic energy demand in multi story structures with BRB was investigated through time-history analysis. The story-wise distribution pattern of hysteretic energy demands was also obtained and was applied in the design process. According to analysis results, the maximum displacements of the 3-story structure designed in accordance with the proposed procedure generally coincided with the target displacements on the conservative side. The maximum displacements of the 6- and 8-story structures, however, turned out to be somewhat smaller than the target values due to the participation of higher vibration modes.

Obesity from the viewpoint of metabolic rate (대사량의 측면에서 본 비만)

  • Shin, Sang-Won;Kim, Ho-Jun;Kim, Su-Jin
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.3 no.1
    • /
    • pp.95-105
    • /
    • 2003
  • The obesity is the matter of the energy balance in essential. The energy balance in human body is energy expenditure subtracted from energy intake. The energy intake is mainly supplied by carbohydrates, proteins and lipids in food, and the energy expenditure is composed of basal metabolic rate or resting energy expenditure, physical activity and thermogenesis including diet-induced thermogenesis. The resting energy expenditure is measured by direct calorimetry and indirect calorimetry. Generally we can simply use predictive equation with the variables of weight, height, age and fat-free mass to yield metabolic rate. But there is discrepancy between the estimate and real metabolic rate because the equations can not reflect individuality and environments. The resting energy expenditure is influenced by many factors but the fundamental factor is fat-free mass. We briefly reviewed the concept and evaluation of the energy balance, intake and expenditure, which are important parts in the study of obesity. Finally, we surveyed the correlation between metabolic rate and obesity and suggested applicable herb medication to increase metabolic rate.

  • PDF

A study on determination of target displacement of RC frames using PSV spectrum and energy-balance concept

  • Ucar, Taner;Merter, Onur;Duzgun, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.759-773
    • /
    • 2012
  • The objective of this paper is to present an energy-based method for calculating target displacement of RC structures. The method, which uses the Newmark-Hall pseudo-velocity spectrum, is called the "Pseudo-velocity Spectrum (PSVS) Method". The method is based on the energy balance concept that uses the equality of energy demand and energy capacity of the structure. First, nonlinear static analyses are performed for five, eight and ten-story RC frame structures and pushover curves are obtained. Then the pushover curves are converted to energy capacity diagrams. Seven strong ground motions that were recorded at different soil sites in Turkey are used to obtain the pseudo-acceleration and the pseudo-velocity response spectra. Later, the response spectra are idealised with the Newmark-Hall approximation. Afterwards, energy demands for the RC structures are calculated using the idealised pseudo-velocity spectrum. The displacements, obtained from the energy capacity diagrams that fit to the energy demand values of the RC structures, are accepted as the energy-based performance point of the structures. Consequently, the target displacement values determined from the PSVS Method are checked using the displacement-based successive approach in the Turkish Seismic Design Code. The results show that the target displacements of RC frame structures obtained from the PSVS Method are very close to the values calculated by the approach given in the Turkish Seismic Design Code.

Minimizing Energy Consumption of Sensor Networks with Energy Balance Ratio and Relay Node Placement (에너지 균형비와 중계노드 위치를 함께 고려한 센서 네트워크의 에너지 소비 최소화)

  • Sohn, Surg-Won;Han, Kwang-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1549-1555
    • /
    • 2009
  • The Relay node placement problem is one of the most important requirements for many wireless sensor networks because the lifetime of sensor networks is closely related with the placement of relay nodes which receive sensed data from sensor nodes and forward them to the base station. Relay node placement problem has focused at minimization of dissipated total energy of the sensor nodes in whole networks. However, minimum total energy causes the unbalance of consumed energy in sensor nodes due to different distances between relay nodes and sensor nodes. This paper proposes the concept of energy balance ratio and finds the locations of relay nodes using objective functions which maximize the energy balance ratio. Maximizing this ratio results in maximizing the network lifetime by minimizing the energy consumption of large-scale sensor networks. However, finding a solution to relay node placement problem is NP-hard and it is very difficult to get exact solutions. Therefore, we get approximate solutions to EBR-RNP problem which considers both energy balance ratio and relay node placement using constraint programming.

Analysis of Energy and Material Balance in Smelting Process of Waste Sand (폐주물사의 용융공정에서의 물질 및 에너지 수지의 해석)

  • Chung, Won-Sub;Min, Dong-Jun;Yoon, Su-Jong
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.477-482
    • /
    • 1995
  • A computer simulation model of various smelting process for melting waste sand was developed by using energy and material balance concept. This model can predict the coal, flux and oxygen consumption and the volume and temperature of off-gas. The major critical variables for smelting process can be explained by using the analysis of energy and material balance. The major conclusions were as follows; 1. The most important variables for smelting process were high post-combustion ratio, high heat transfer efficiency and refractory protection technology. 2. For saving energy in this smelting process, selection of raw materials i.e coal, flux are very important, espacially using of low volatile coal is very profitable. 3. The treatment cost of waste sand is high and environmental restriction is severe, in this reason we must be concerned in the treatment of waste sand by smelting process.

  • PDF

Energy Balance and Power Performance Analysis for Satellite in Low Earth Orbit

  • Jang, Sung-Soo;Kim, Sung-Hoon;Lee, Sang-Ryool;Choi, Jae-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.253-262
    • /
    • 2010
  • The electrical power system (EPS) of Korean satellites in low-earth-orbit is designed to achieve energy balance based on a one-orbit mission scenario. This means that the battery has to be fully charged at the end of a one-orbit mission. To provide the maximum solar array (SA) power generation, the peak power tracking (PPT) method has been developed for a spacecraft power system. The PPT is operated by a software algorithm, which tracks the peak power of the SA and ensures the battery is fully charged in one orbit. The EPS should be designed to avoid the stress of electronics in order to handle the main bus power from the SA power. This paper summarizes the results of energy balance to achieve optimal power sizing and the actual trend analysis of EPS performance in orbit. It describes the results of required power for the satellite operation in the worst power conditions at the end-of-life, the methods and input data used in the energy balance, and the case study of energy balance analyses for the normal operation in orbit. Both 10:35 AM and 10:50 AM crossing times are considered, so the power performance in each case is analyzed with the satellite roll maneuver according to the payload operation concept. In addition, the data transmission to the Korea Ground Station during eclipse is investigated at the local-time-ascending-node of 11:00 AM to assess the greatest battery depth-of-discharge in normal operation.

TOKAMAK REACTOR SYSTEM ANALYSIS CODE FOR THE CONCEPTUAL DEVELOPMENT OF DEMO REACTOR

  • Hong, Bong-Guen;Lee, Dong-Won;In, Sang-Ryul
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.87-92
    • /
    • 2008
  • Tokamak reactor system analysis code was developed at KAERI (Korea Atomic Energy Research Institute) and is used here for the conceptual development of a DEMO reactor. In the system analysis code, prospects of the development of plasma physics and the relevant technology are included in a simple mathematical model, i.e., the overall plant power balance equation and the plasma power balance equation. This system analysis code provides satisfactory results for developing the concept of a DEMO reactor and for identifying the necessary R&D areas, both in the physics and technology areas for the realization of the concept. With this system analysis code, the performance of a DEMO reactor with a limited extension of the plasma physics and technology adopted in the ITER design. The main requirements for the DEMO reactor were selected as: 1) demonstrate tritium self-sufficiency, 2) generate net electricity, and 3) achieve a steady-state operation. It was shown that to access an operational region for higher performance, the main restrictions are presented by the divertor heat load and the steady-state operation requirements.

The Concept of a Gravity Engine and Energy Performance for Tidal and Hydro-Power

  • Lee, Jae-Young
    • Journal of Energy Engineering
    • /
    • v.9 no.1
    • /
    • pp.47-53
    • /
    • 2000
  • This paper is to propose the concept and performance of a gravity engine which could extract energy from sea or river as a clean. renewable and sustainable power. the vertical motion of the buoyancy cylinder of the present gravity engine is converted to the mechanical work directly without any hydraulic loss. The positive net energy between the imposed and harnessed one is achieved by the specific operating procedure. The detailed derivation of the energy balance is made based on the first principle of thermodynamics. The calculation demonstrates that the present gravity engine could harness more energy than the conventional turbine system in the same basin area because of the relatively high efficiency in the energy conversion system and added mass from the buoyancy cylinder.

  • PDF

A Study on the Heat and Mass Balance of Smelting Reduction Process for Manganese Nodules (망간단괴 용융환원 제련공정의 물질 및 열수지 모델링)

  • Cho, Moon Kyung;Park, Kyung Ho;Min, Dong Joon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.304-310
    • /
    • 2009
  • Recently, manganese nodule has been focused on alternative resources because of its high grade of noble metallic elements such as Co, Ni, and Cu etc. From the viewpoint of an optimization the operating variables for energy efficiency of smelting reduction process, thermodynamic model for smelting reduction process of Manganese nodule was developed by using energy and material balance concept. This model provided that specific consumption of pure oxygen and coke was strongly depended on post combustion ratio (PCR) and heat transfer efficiency (HTE). The dressing and dehydrating process of low grade manganese can be proposed an essential process to minimize the specific energy consumption with decreasing slag volume. The effect of electricity coal base smelting reduction process was also discussed from the energy optimizing point of view.

An energy-based design for seismic resistant structures with viscoelastic dampers

  • Paolacci, F.
    • Earthquakes and Structures
    • /
    • v.4 no.2
    • /
    • pp.219-239
    • /
    • 2013
  • The present paper aims at studying the seismic response of structures equipped with viscoelastic dampers (VED). The performance of such a passive control system is here analyzed using the energy balance concept, which leads to an optimal design process. The methodology is based on an energy index (EDI) whose maximization permits determination of the optimal mechanical characteristics of VED. On the basis of a single degree of freedom model, it is shown that the maximum value of EDI corresponds to a simultaneous optimization of the significant kinematic and static response quantities, independently of the input. By using the proposed procedure, the optimal design of new and existing structures equipped with VED, inserted in traditional bracing systems, are here analyzed and discussed.