• Title/Summary/Keyword: endonuclease activity

Search Result 75, Processing Time 0.029 seconds

NMR PEAK ASSIGNMENT FOR THE ELUCIDATION OF THE SOLUTION STRUCTURE OF T4 ENDONUCLEASE V

  • Im, Hoo-Kang;Jee, Jun-Goo;Yu, Jun-Suk;Lee, Bong-Jin
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.18-18
    • /
    • 1996
  • Bacteriophage T4 endonuclease V initiates the repair of ultraviolet (UV)-induced pyrimidine dimer photoproducts in duplex DNA. The mechanism of DNA strand cleavage involves four sequential steps: linear diffusion along dsDNA, pyrimidine dimer-specific binding, pyrimidine dimer-DNA glycosylase activity, and AP lyase activity. (omitted)

  • PDF

Purification and Characterization of Acc I Endonuclease (Acc I endonuclease의 정제와 효소적 특성에 관한 연구)

  • 강선철;유욱준
    • Korean Journal of Microbiology
    • /
    • v.23 no.1
    • /
    • pp.13-19
    • /
    • 1985
  • Acc I endonuclease has been isolated from 300g (wet weight) cells of Acinetobacter calcoaceticus. The cells were broken by using French press at 20, 000p.s.i. After ammonium sulfate fractionation, the enzyme was further purified by heparin agarose, DEAE-sephades, Affi.-gel Blue, phosphocellulose, and hydroxylapatite column chromatography. The purified Acc I endonudlease has a single polypeptide species and its subunit molecular weight was 45,000 ${\pm}$ 1,000 daltons as judged by 10% SDS-polyacrylamide gel electrophoresis. The isolated enzyme was essentially free of contaminating nucleases as judged by homochromatography by using a $^{32}P-labeled$ oligonucleotide. The enzyme showed maximum activity at pH values between 8.0 and 11.0 and in the presence of $MgCl_2$. Acc I endonuclease was maximally active in the absence of NaCl and was completely inhibited at 200 mM NaCl.

  • PDF

Recombinant Expression and Purification of Functional XorII, a Restriction Endonuclease from Xanthomonas oryzae pv. oryzae

  • Hwang, Dong-Kyu;Cho, Jae-Yong;Chae, Young-Kee
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.175-178
    • /
    • 2007
  • An endonuclease from Xanthomonas oryzae pathovar oryzae KACC 10331, XorII, was recombinantly produced in Escherichia coli using a T7 system. XorII was purified using a combination of ion exchange and immobilized metal affinity chromatography (IMAC). An optimized washing protocol was carried out on an IMAC in order to obtain a high purity product. The final amount of purified XorII was approximately 2.5 mg/L of LB medium. The purified recombinant XorII was functional and showed the same cleavage pattern as PvuI. The enzyme activity tested the highest at $25^{\circ}C$ in 50 mM NaCl, 10 mM Tris-HCl, 10 mM $MgCl_{2}$, and 1 mM dithiothreitol at a pH of 7.9.

Purification and Characterzation of a Restriction Endonuclease from Pseudomonas syringae pv.phaselicola (Pseudomonas syringe pv. phaseolicola로 부터 제한효소의 분리정제 및 특성)

  • Bae, Moo;Lee, Eun-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.5
    • /
    • pp.485-490
    • /
    • 1994
  • A restriction endonuclease, PsyI, has been isolated from Pseudomonas syringae pv. pha- seolicola, and its catalytic properties have been studied. This enzyme was purified through strepto- mycin sulfate and ammonium sulfate fractionation, phosphocellulose Pll, DEAE-cellulose, hydroxy- apatite and Sephadex G-100 column chromatography. It's molecular weight was about 50,000 dalton as determined by 7.5% polyacrylamide gel electrophoresis containing 0.1% SDS. In catalytic proper- ties, PsyI shows stable at wide ranges of pH between 7.0 and 10.0, of temperature between 30$\circ$C and 37$\circ$C, and its thermal stability is between 25$\circ$C, and 45$\circ$C, at the presence Of 10 mM MgCl$_{2}$-PsyI essentially require Na salt for enzyme reaction, is rather inhibited in the high Na salt concent- ration. The presence of 2-mercaptoethanol is absolutely required for the enzyme activity. This endonuclease, PsyI was determined to be an isoschizomer of SalI from the results of the restriction mapping and DNA sequencing.

  • PDF

A qPCR Method to Assay Endonuclease Activity of Cas9-sgRNA Ribonucleoprotein Complexes

  • Minh Tri Nguyen;Seul-Ah Kim;Ya-Yun Cheng;Sung Hoon Hong;Yong-Su Jin;Nam Soo Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1228-1237
    • /
    • 2023
  • The CRISPR-Cas system has emerged as the most efficient genome editing technique for a wide range of cells. Delivery of the Cas9-sgRNA ribonucleoprotein complex (Cas9 RNP) has gained popularity. The objective of this study was to develop a quantitative polymerase chain reaction (qPCR)-based assay to quantify the double-strand break reaction mediated by Cas9 RNP. To accomplish this, the dextransucrase gene (dsr) from Leuconostoc citreum was selected as the target DNA. The Cas9 protein was produced using recombinant Escherichia coli BL21, and two sgRNAs were synthesized through in vitro transcription to facilitate binding with the dsr gene. Under optimized in vitro conditions, the 2.6 kb dsr DNA was specifically cleaved into 1.1 and 1.5 kb fragments by both Cas9-sgRNA365 and Cas9-sgRNA433. By monitoring changes in dsr concentration using qPCR, the endonuclease activities of the two Cas9 RNPs were measured, and their efficiencies were compared. Specifically, the specific activities of dsr365RNP and dsr433RNP were 28.74 and 34.48 (unit/㎍ RNP), respectively. The versatility of this method was also verified using different target genes, uracil phosphoribosyl transferase (upp) gene, of Bifidobacterium bifidum and specific sgRNAs. The assay method was also utilized to determine the impact of high electrical field on Cas9 RNP activity during an efficient electroporation process. Overall, the results demonstrated that the qPCR-based method is an effective tool for measuring the endonuclease activity of Cas9 RNP.

Human ChlR1 Stimulates Endonuclease Activity of hFen1 Independently of ATPase Activity

  • Kim, Do-Hyung;Kim, Jeong-Hoon;Park, Byoung Chul;Lee, Do Hee;Cho, Sayeon;Park, Sung Goo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3005-3008
    • /
    • 2014
  • Human ChlR1 protein (hChlR1), a member of the cohesion establishment factor family, plays an important role in the segregation of sister chromatids for maintenance of genome integrity. We previously reported that hChlR1 interacts with hFen1 and stimulates its nuclease activity on the flap-structured DNA substrate covered with RPA. To elucidate the relationship between hChlR1 and Okazaki fragment processing, the effect of hChlR1 on in vitro nuclease activities of hFen1 and hDna2 was examined. Independent of ATPase activity, hChlR1 stimulated endonuclease activity of hFen1 but not that of hDna2. Our findings suggest that the acceleration of Okazaki fragment processing near cohesions may aid in reducing the size of the replication machinery, thereby facilitating its entry through the cohesin ring.

Purification and Characterization of a Deoxyriboendonuclease from Mycobacterium smegmatis

  • Mandal, Prajna;Chakraborty, Phulghuri;Sau, Subrata;Mandal, Nitai Chandra
    • BMB Reports
    • /
    • v.39 no.2
    • /
    • pp.140-144
    • /
    • 2006
  • A deoxyriboendonuclease has been purified to near homogeneity from a fast growing mycobacterium species, M. smegmatis and characterized to some extent. The size of enzyme is about 43 kDa as determined by a denaturing gel analysis. It shows optimum activity at $32^{\circ}C$ in Tris-HCl buffer (pH 7.2) containing 2.5 mM of $MgCl_2$. Both EDTA and $K^+$ but not $Na^+$ inhibit its activity. Evidences show that the enzyme is not a restriction endonuclease but catalyzes the endonucleolytic cleavage of both the double- as well as the single-strand DNA non-specifically. It has been shown that the cleavage by this enzyme generates DNA fragments carrying phosphate groups at 5' ends and hydroxyl group at the 3' ends, respectively. Analysis reveals that no endonuclease having size and property identical to our deoxyriboendonuclease had been purified from M. smegmatis before. The property of our enzymes closely matches with the deoxyriboendonucleases purified from diverse sources including bacteria.

Joint Interactions of SSB with RecA Protein on Single-Stranded DNA

  • Kim, Jong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.562-567
    • /
    • 1999
  • Single-stranded DNA binding protein (SSB) is well-characterized as having a helix-destabilizing activity. The helix-destabilizing capability of SSB has been re-examined in this study. The results of restriction endonuclease protection assays and titration experiments suggest that the stimulatory effect of SSB on strand exchange acts by melting out the secondary structure which is inaccessible to RecA protein binding; however, SSB is excluded from regions of secondary structure present in native single-stranded DNA. Complexes of SSB and RecA protein are required for eliminating the secondary structure barriers under optimal conditions for strand exchange.

  • PDF

Purification and Characterization of stu I Endomuclease from Streptomyces Tubercidicus (Streptomyces tubercidicus에 존재하는 stu I endonuclease의 정제와 특징)

  • 김기태;정미영;유욱준
    • Korean Journal of Microbiology
    • /
    • v.25 no.3
    • /
    • pp.180-183
    • /
    • 1987
  • Stu I, type II restriction endonuclease, has been purified to homogeneity from Streptomyces tubercidicus (ATCC 25502), and its catalytic properties have been studied. For the purification of Stu I endonuclease free of nonspecific nucleases, DEAE-Sephadex (A-50), QAE-Sephadex (A-50) and Heparin-agarose column chromatography have been performed after ammonium sulfate fractionation of the crude extract. The enzyme was further purified by gel filtration using Sephadex G-100 column to obtain homogeneous form of protein. The single polypeptide species of Stu I endonuclease has a subunit molecular weight of 34,000 $\pm$ 1,000 daltons as judged by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Stu I endonuclease requires $Mg^{2+}$ ion for its activity and is maximally active at neutral pH (7.0-8.0) in the absence of NaCl.

  • PDF

Cohesion Establishment Factors Stimulate Endonuclease Activity of hFen1 Independently and Cooperatively

  • Kim, Do-Hyung;Kim, Jeong-Hoon;Park, Byoung Chul;Cho, Sayeon;Park, Sung Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1768-1771
    • /
    • 2015
  • Human Fen1 protein (hFen1) plays an important role in Okazaki fragment processing by cleaving the flap structure at the junction between single-stranded (ss) DNA and doublestranded (ds) DNA, an intermediate formed during Okazaki fragment processing, resulting in ligatable nicked dsDNA. It was reported that hChlR1, a member of the cohesion establishment factor family, stimulates hFen1 nuclease activity regardless of its ATPase activity. In this study, we found that cohesion establishment factors cooperatively stimulate endonuclease activity of hFen1 in in vivo mimic condition, including replication protein-A-coated DNA and high salt. Our findings are helpful to explain how a DNA replication machinery larger than the cohesion complex goes through the cohesin ring structure on DNA during S phase in the cell cycle.