• Title/Summary/Keyword: encapsulation stability

Search Result 134, Processing Time 0.032 seconds

Improved Antigen Delivery Systems with PLGA Microsphere for a Single-Step Immunization (PLGA 미립구를 이용한 새로운 단회 접종 항원 전달 시스템의 개발)

  • Yoon, Mi-Kyeong;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2004
  • A promising approach to the development of a new single-step vaccine, which would eliminate the requirement for multiple injections, involves the encapsulation of antigens into microspheres. Biodegradable poly(lactide-co-glycolide) (PLGA) microspheres gave us a bright insight for controling antigen release in a pulsatile fashion, thereby mimicking two or tree boosting injections. However, in spite of the above merits, the level of immunization induced by a single-shot vaccination is often lower tan two doses of alum-adsorbed antigen. Therefore, optima modification of the microsphere is essential for the development of single-step vaccines. In the review, we discuss the stability of antigen in microsphere, safety and non-toxic in human and encapsulation technology. Also, we attempted to outline relevant physicochemical properties on the immunogenicity of microsphere vaccine and attainment of pulsatile release pater by combination of different microsphere, as well as to analyze immunological data associated with antigen delivery by microsphere. Although a lot of variables are related to the optimized microsphere formulation, we could conclude that judicious choice of proper polymer type, adjustment of particles size, and appropriate immunization protocol along with a suitable adjuvant might be a crucial factor for the generation of long-lasting immune response from a single-step vaccine formulation employing PLGA microsphere.

Production of Bone Broth Powder with Spray Drying Using Three Different Carrier Agents

  • Haluk, Ergezer;Yeliz, Kara;Orhan, Ozunlu
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1273-1285
    • /
    • 2018
  • The aim of this study is to determine the some physicochemical (proximate composition, pH and $a_w$ values) and reconstitution (wettability, dispersibility and solubility index (SI)) properties of spray-dried bone broth powder (BBP) along with the effects of the addition of different carrier agents. Subsequently, the powdered products were stored to determine the storage stability (pH, lipid oxidation, color, browning index) for 3 mon at $-18^{\circ}C$. For this purpose, firstly marrow-containing bones (Os femur and Os humerus) have been boiled to get the bone broth. Three different emulsions were respectively prepared (1) 20% maltodextrin (MD) added BBP, (2) 20% whey powder isolate (WPI) added BBP and (3) 10% MD and 10% WPI added BBP and the emulsions were dried using a spray-dryer with $185^{\circ}C$ inlet and $95^{\circ}C$ outlet temperature. The proximate composition and reconstitution properties of BBP were found statistically different (p<0.05) depending on the use of different carrier agents. MD added BBP showed uniform and smooth morphology. The color, browning index, thiobarbituric acid reactive substances (TBARS) and pH values of BBP significantly changed (p<0.05) during storage. In conclusion, both the results of physicochemical and storage period analyses showed that the most suitable encapsulation material in the production of the bone broth powder is MD.

Simple Fabrication of Green Emission and Water-Resistant CsPbBr3 Encapsulation Using Commercial Glass Frits (상업용 유리프릿의 소결 공정을 이용한 내수성을 갖는 CsPbBr3/Glass 세라믹 복합체의 제작)

  • Mun, Na-eun;Kim, Sunghoon
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.54-59
    • /
    • 2021
  • In this work, narrow-band green-emitting CsPbBr3 particles are embedded in commercialized glass composites by a facile dry process. By optimizing the method through sintering in glass frit (GF) composites including CsBr and PbBr2, used as precursors, the encapsulation of CsPbBr3 particles made them waterproof with green fluorescence. To improve the fluorescent properties by reducing aggregation of CsPbBr3, fumed silica (FS) is additionally used to help particles avoid bulking up in the glass matrix. The CsPbBr3 perovskite/glass composites are characterized using scanning electron microscopy (SEM) images and energy-dispersive X-ray spectroscopy (EDS) maps, which support the existence of CsPbBr3 particles in the glass matrix. The photoluminescence (PL) properties demonstrate that the emission spectrum peak, full width at half maximum (FWHM), and photoluminescence quantum yield (PLQY) values are 519 nm, 17 nm, and 17.7 %. We also confirm the water-resistant properties. To enhance water/moisture stability, the composite sample is put directly into water, with its PLQY monitored periodically under UV light.

Production of Methanol from Methane by Encapsulated Methylosinus sporium

  • Patel, Sanjay K.S.;Jeong, Jae-Hoon;Mehariya, Sanjeet;Otari, Sachin V.;Madan, Bharat;Haw, Jung Rim;Lee, Jung-Kul;Zhang, Liaoyuan;Kim, In-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2098-2105
    • /
    • 2016
  • Massive reserves of methane ($CH_4$) remain unexplored as a feedstock for the production of liquid fuels and chemicals, mainly because of the lack of economically suitable and sustainable strategies for selective oxidation of $CH_4$ to methanol. The present study demonstrates the bioconversion of $CH_4$ to methanol mediated by Type I methanotrophs, such as Methylomicrobium album and Methylomicrobium alcaliphilum. Furthermore, immobilization of a Type II methanotroph, Methylosinus sporium, was carried out using different encapsulation methods, employing sodium-alginate (Na-alginate) and silica gel. The encapsulated cells demonstrated higher stability for methanol production. The optimal pH, temperature, and agitation rate were determined to be pH 7.0, $30^{\circ}C$, and 175 rpm, respectively, using inoculum (1.5 mg of dry cell mass/ml) and 20% of $CH_4$ as a feed. Under these conditions, maximum methanol production (3.43 and 3.73 mM) by the encapsulated cells was recorded. Even after six cycles of reuse, the Na-alginate and silica gel encapsulated cells retained 61.8% and 51.6% of their initial efficiency for methanol production, respectively, in comparison with the efficiency of 11.5% observed in the case of free cells. These results suggest that encapsulation of methanotrophs is a promising approach to improve the stability of methanol production.

Fabrication and Its Biomedical Application of the pH-ISFET Microprobe (pH-ISFET 마이크로프로브의 製作과 그 生醫學的 應用)

  • Lee, Kwang-Man;Sohn, Byung-Ki
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.11
    • /
    • pp.1335-1341
    • /
    • 1988
  • A pH-ISEFET microprobe for in vivo measurements has been fabricated by combining ISFET (SL-IIS) chip and capillary thin film reference electrode. A two-step TCE oxidation for the gate oxide layer and multilayer encapsulation using silicone rubber and epoxy were specially used for the improvement of the stability and temperature dependence of the ISFET's. The measured sensitivit, response time and temperature dependence of the pH-ISFET microprobes are 50 mV/pH, less than one second, and - 0.01 pH/$^{\circ}$ , respectively. By operating continuously more than 40 days, a long term stability of 0.016 pH/day is obtained. The result of pH monitoring of femoral arterial blood in a rabbit is fairly good agreement with the value of blood gas analysis.

  • PDF

Encapsulation of Flavors by Molecular Inclusion Using $\beta$-Cyclodextrin: Comparison with Spray-drying Process Using Carbohydrate-based Wall Materials

  • Cho, Young-Hee;Park, Ji-Yong
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.185-189
    • /
    • 2009
  • Microencapsulation of flavor was carried out by molecular inclusion process using $\beta$-cyclodextrin (${\beta}CD$). ${\beta}CD$-flavor complex was prepared at various flavor-to-${\beta}CD$ ratios (1:6-1:12) to determine the effect of ${\beta}CD$ concentration on the inclusion efficiency. Maximum total oil retention and minimal surface oil content were obtained at flavors to ${\beta}CD$ ratio of 1:10. The physical properties and controlled release pattern of flavors from ${\beta}CD$-flavor complex were measured and compared with spray-dried microcapsules prepared using carbohydrate wall system. ${\beta}CD$-flavor complex showed higher total oil retention and surface oil contents, smaller mean particle size, lower moisture uptake, and higher oxidation stability than spray-dried microcapsule. Oxidative stability of flavor was correlated with hygroscopicity of wall materials. The controlled release mechanism was highly affected by temperature and characteristics of wall materials.

Comparison of the stability between branched-chain amino acid (BCAA)-coated liposome and double emulsion (분지쇄아미노산(BCAA)이 포집된 더블에멀션과 리포좀의 안정성 비교)

  • Lee, YunJung;Lee, SangYoon;Shin, Hyerin;Kang, Guhyun;Wi, Gihyun;Ko, Eun Young;Cho, Youngjae;Choi, Mi-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.636-641
    • /
    • 2018
  • This study was conducted to compare the stability between branched-chain amino acid (BCAA)-encapsulated liposome and double emulsion (DE). Liposome was produced by high-speed homogenization and ultrasonication whereas DE was prepared by homogenizing with surfactants. All samples were fixed at pH 4 and 7 and stored at 4, 25, and $40^{\circ}C$ for 5 days. Encapsulation efficiency and cumulative release rate were measured under $4^{\circ}C$ and at $25^{\circ}C$. The results showed that the size of BCAA-coated liposome was greater at pH 7 than at pH 4. The zeta-potential value of BCAA-coated liposome was greater at pH 4 than at pH 7. It was supposed that the negatively charged liposomes attracted the positively charged BCAAs at pH 4 resulting in the formation of the vesicle with smaller size. Particle size of DE was smaller than $100{\mu}m$. Encapsulation efficiencies of BCAA in DE or liposome were over 97%, approximately, and the cumulative release rates of them were below 30% for 5 days.

In Vitro and In Vivo Studies of Different Liposomes Containing Topotecan

  • Hao, Yan-Li;Deng, Ying-Jie;Chen, Yan;Wang, Xiu-Min;Zhong, Hai-Jun;Suo, Xu-Bin
    • Archives of Pharmacal Research
    • /
    • v.28 no.5
    • /
    • pp.626-635
    • /
    • 2005
  • Liposome as a carrier of topotecan (TPT), a promising anticancer drug, has been reported in attempt to improve the stability and antitumor activity of TPT. However, the biodistr ibution pattern of TPT liposome in vivo and PEG-modified liposome containing TPT have not been studied systemically. In this paper, the in vitro stability and in vivo biodistribution behavior of several liposomes containing TPT with different lipid compositions and PEG-modification were studied. Compared with the 'fluid' liposome (S-Lip) composed of soybean phosphatidylcholine (SPC), the 'solid' liposome (H-Lip) composed of hydrogenated soybean phosphatidylcholine HSPC decreased the leaking efficiency of TPT from liposome and enhanced the stability of liposome in fetal bovine serum (FBS) or human blood plasma (HBP). The results of biodistribution studies in S$_{180}$ tumor-bearing mice showed that liposomal encapsulation increased the concentrations of total TPT and the ratio of lactone form in plasma. Compared with free TPT, S-Lip and H-Lip resulted in 5- and 19- fold increase in the area under the curve (AUC$_{0\rightarrow\propto}$), respectively. PEG- modified H-Lip (H-PEG) showed 3.7-fold increase in AUC$_{0\rightarrow\propto}$ compared with H-Lip, but there was no significant increase in t$_{1/2}$ and AUC$_{0\rightarrow\propto}$ for PEG-modified S-Lip (S-PEG) compared with S-Lip. Moreover, the liposomal encapsulation changed the biodistribution behavior, and H-Lip and H-PEG dramatically increased the accumulation of TPT in tumor, and the relative tumor uptake ratios were 3.4 and 4.3 compared with free drug, respectively. There was also a marked increase in the distribution of TPT in lung when the drug was encapsulated into H-Lip and H-PEG. Moreover, H-PEG decreased the accumulation of TPT in bore marrow compared with unmodified H-Lip. All these results indicated that the membrane fluidity of liposome has an important effect on in vitro stability and in vivo biodistribution pattern of liposomes containing TPT, and PEG-modified 'solid' liposome may be an efficient carrier of TPT.

Stability of hydrophobic properties of plasma polymerized tetrakis(trimethylsilyloxy)silane film surface

  • Jang, Jinsub;Woo, Sungmin;Ban, Wonjin;Nam, Jaehyun;Lee, Yeji;Choi, Woo Seok;Jung, Donggeun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.147.1-147.1
    • /
    • 2016
  • Hydrophobic thin films are variously applicable for encapsulation of organic devices and water repulsive glass, etc. In this work, the stability of hydrophobic characteristics of plasma polymerized tetrakis (trimethylsilyloxy) silane (ppTTMSS) thin films were investigated. The films were deposited with plasma enhanced chemical vapor deposition (PECVD) on the glass. The deposition plasma power and deposition pressure was 70 W and 600 mTorr, respectively. Thereafter, deposited films were treated by 248nm KrF excimer laser. Stability of hydrophobic properties of plasma polymerized tetrakis(trimethylsilyloxy)silane film surface was tested by excimer laser irradiation, which is thought to simulate severe outdoor conditions. Excimer laser irradiation cycles changed from 10 to 200 cycles. The chemical structure and hydrophobicity of ppTTMSS films were analyzed by using Fourier transform infrared (FTIR) spectroscopy and water contact angle (WCA) measurement, respectively. Absorption spectra peaks and WCA of excimer laser treated ppTTMSS films did not change notably. These results show that our ppTTMSS films possess stable hydrophobic properties.

  • PDF

Microencapsulation of Fish Oil by Spray Drying using Different Wall Materials (분무건조기술을 이용한 어유의 미세캡슐화)

  • Cha, Kwang-Ho;Yang, Jin-Su;Yeon, Seung-Ho;Hong, Jang-Hwan;Kim, Min-Soo;Kim, Jeong-Soo;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.2
    • /
    • pp.113-117
    • /
    • 2007
  • The aim of this study was to investigate the effect of different wall material on the microencapsulation efficiency of microcapsules containing fish oil. The present work reports on the microencapsulation of fish oil by spray drying using hydroxypropyl methylcellulose (HPMC) 2910, maltodextrin, gelatin, sodium caseinate as wall materials. The emulsion stability was assessed by emulsion stability index value (ESI). The microstructural properties of microcapsules was evaluated by scanning electron microscopy (SEM) and microencapsulation efficiency (ME) was assessed by soxhlet method. The highest ESI and ME were observed in the case of a 1:1 gelatin/sodium caseinate ratio and 1:1 glycerin fatty acid ester/lecithin ratio, and ME of microcapsules was increased with increasing the ESI of emulsion. Thus, the stability of emulsion was a critical factor for the encapsulation of fish oil.