• Title/Summary/Keyword: emulsions

검색결과 350건 처리시간 0.028초

쿼터늄-18 헥토라이트를 사용한 Water-in-Oil 에멀젼의 유변학적 거동 (Rheological Behaviour of Water-in-Oil Emulsions using Quaternium-18 Hectorite)

  • 조완구;김병수
    • 한국응용과학기술학회지
    • /
    • 제26권4호
    • /
    • pp.407-414
    • /
    • 2009
  • Water-in-Oil (W/O) emulsions are widely used in cosmetics. However, O/W (Oil-in-Water) emulsions are generally superior to W/O emulsions in terms of stability. In this study, we investigated the changes of viscosity, the size of emulsion droplets, and rheological properties of emulsions prepared using distearyldimonium chloride (DDC), magnesium aluminum silicate (MAS) and quaternium-18 hectorite (QH). In addition to the changes of the composition, we tested the condition of homogenization including rotation per minute of the mixer and the mixing time. The viscosity of emulsions with DDC and AMS were not changed with time and the stability of emulsions was stable during the storage time. However, the fluidity of emulsions were low due to the forming gel network in the emulsions. The gelling power of the emulsions with QH was rather weaker than that of the emulsions with DDC and MAS. The viscosity of emulsions with QH was gradually reduced and the phase separation of emulsions with high concentration of oil was observed throughout the storage time, however, the stability of emulsions with DDC, MAS and QH was excellent, the fluidity of emulsions was enhanced, and the viscosity of emulsions was sustained for a long time after setting of emulsions.

Properties of Oil-in-Water Nano-emulsions Prepared from Hydrogenated Lecithin with High Pressure Homogenizer

  • Cho, Wan-Goo;Bae, Duck-Whan
    • 한국응용과학기술학회지
    • /
    • 제28권1호
    • /
    • pp.1-5
    • /
    • 2011
  • In this study, We investigated the properites of nano-emulsions containing hydrogenated lecithin prepared by high pressure homogenizer. The size of droplet of emulsions prepared by homogenizer at various rpm (rotation per minute) was not measured due to the unstability of emulsions, however, the size of droplet of nano-emulsions prepared by high pressure homogenizer was around 300 nm and the appearance of emulsions was bluish. The stability of emulsions with various lecithin concentration was tested against time. POV (Peroxide value) of emulsions were plotted against time. POVs of emulsions prepared with an egg lecithin and a soy lecithin were increased with time, however, POV of emulsion with Lecinol S-$10^{(R)}$ was kept constant within 60 hours and at $60^{\circ}C$. In consumer test, the nano-emulsion showed higher affinity regardless of skin type. Both of irritation scores of emulsions were similar.

W/O형 에멀젼 중의 O/W/O형 에멀젼 생성 (Formation of W/O/W Emulsions in W/O Emulsions)

  • 하영득;강우원
    • 한국식품영양과학회지
    • /
    • 제19권6호
    • /
    • pp.612-616
    • /
    • 1990
  • 전상이 일어나기 직전의 W/O형 에멀젼에는 W/O형 에멀젼과 섞여 O/W/O 형 에멀젼이 생성한다는 것을 알았다. 그래서 W/O형 에멀젼 중에 분산된 O/W/O형 분산의 정도를 평가하기 위한 목적으로 시료 에멀젼(수상 :물, 유상 TGCR을 함유한 올리브유)을 원추 평판형 회전 점도계를 사용하여 전단속도 1.92-384sec$^{-1}$(온도 25$\pm$0.1$^{\circ}C$)에서 점도를 측정하고 이 값을 Mooney의 점도식에 대입하여 이론치와 실측치의 차로부터 O/W/O형 분산의 정도를 평가했다. O/W/O형 에멀젼의 생성은 전상 직전의 시료에서 높았고, 유화제인 TGCR의 농도가 낮을수록 O/W/O형 에멀젼의 생성이 증가되는 경향이 나타났다. 이러한 사실로부터 W/O형 에멀젼이 전상 직전 부근에서 이론적으로 설명할 수 없는 고점도 현상이 전상직전의 O/W/O형 에멀젼의 생성에 의해서도 일어날 가능성이 있다고 사료된다.

  • PDF

Influence of Xanthan, Emulsification Temperature, and Environmental Stresses on the Preparation of Water-in-Corn Oil Emulsions Droplets Coated by Polyglycerol Polyricinoleate

  • Surh, Jeong-Hee
    • Food Science and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.299-306
    • /
    • 2009
  • The purpose of this study was to prepare stable water-in-corn oil (W/O) emulsion droplets coated by polyglycerol polyricinoleate (PGPR). W/O emulsions (20 wt% aqueous phase, 80 wt% oil phase containing 8 wt% PGPR) were produced by high pressure homogenization (Emulsions 1), however, appreciable amount of relatively large water droplets (d>$10{\mu}m$) were found. To facilitate droplet disruption, viscosity of each phase was adjusted: (i) increased the viscosity of aqueous phase by adding 0.1 wt% xanthan (Emulsions 2); (ii) decreased the viscosity of oil phase and aqueous phase by heating them separately at $50^{\circ}C$ for 1 hr immediately before emulsification (Emulsions 3). Homogenizing at the elevated temperature clearly led to a smaller water droplet size, whereas xanthan neither improved nor adversely affected on the microstructures of the emulsions. In addition, the Emulsions 3 had good stability to droplet aggregation under shearing stress, thermal processing, and long term storage.

Comparison of Emulsion-stabilizing Property between Sodium Caseinate and Whey Protein Concentrate: Susceptibility to Changes in Protein Concentration and pH

  • Surh, Jeong-Hee
    • Food Science and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.610-617
    • /
    • 2009
  • The stability of corn oil-in-water emulsions coated by milk proteins, sodium caseinate (CAS), or whey protein concentrate (WPC), was compared under the environmental stress of pH change. Emulsions were prepared at 0.1 of protein:oil because the majority of droplets were relatively small ($d_{32}=0.34$ and $0.35\;{\mu}m$, $d_{43}=0.65$ and $0.37\;{\mu}m$ for CAS- and WPC-emulsions, respectively) and there was no evidence of depletion flocculation. As the pH of the emulsions was gradually dropped from 7 to 3, there was no significant difference in the electrical charges of the emulsion droplets between the 2 types of emulsions. However, laser diffraction measurements, microscopy measurements, and creaming stability test indicated that WPC-emulsions were more stable to droplet aggregation than CAS-emulsions under the same circumstance of pH change. It implies that factors other than electrostatic repulsion should contribute to the different magnitude of response to pH change.

초음파를 이용한 초임계 이산화탄소 에멀젼내 Ni 전해도금 (Ni Electroplating in the Emulsions of Supercritical $CO_2$ Formed by Ultrasonar)

  • 고문성;주민수;박광헌;김홍두;김학원;한성호
    • 한국표면공학회지
    • /
    • 제37권6호
    • /
    • pp.344-349
    • /
    • 2004
  • Emulsions were formed through putting small quantity of nickel electroplating solution into supercritical carbon dioxide, and then electroplating in the $sc-CO_2$ emulsions was conducted. It is an environmental-friendly technology that can solve the treatment of a large quantity of toxic plating wastewater, which is a big problem in the existing wet plating, and also can reduce secondary waste generation fundamentally. Supercritical carbon dioxide emulsions enhanced by ultrasonic horn were formed by non-ionic surfactant and nickel solution. Plating condition within emulsions was set up as 120bar and $55^{\circ}C$ through measurement of electrical conductivity following the pressure change. Experiments were conducted respectively against supercritical carbon dioxide emulsions electroplating and general chemical electroplating, and then their results were compared and analyzed. As the experiment result utilizing emulsions, plating surface was formed very evenly even with a small quantity of electroplating solution, and fine particles were plated compactly without any pinhole or crack due to hydrogenation, which occurs in general electroplating. Used electroplating solution can be reused through recovery process. Therefore, this technology will be able to be applied as new clean technology in electro-plating.

아스팔트포장의 표면처리에 사용되는 유화아스팔트의 접착력 특성 평가 (Bond Strength Evaluation of Asphalt Emulsions used in Asphalt Surface Treatments)

  • 임정혁;김영수;양성린
    • 한국도로학회논문집
    • /
    • 제16권5호
    • /
    • pp.1-8
    • /
    • 2014
  • PURPOSES : The objective of this study is to evaluate the bond strength of asphalt emulsions including polymer-modified emulsions for chip seals and fog seals using the bitumen bond strength (BBS) test. METHODS : For the laboratory testing, the Pneumatic Adhesion tensile Testing Instrument(PATTI) device is used to measure the bond strength between the asphalt emulsion and aggregate substrate based on the AASHTO TP-91. In order to conduct all the tests in controled condition, all test procedures are performed in the environmental chamber. The CRS-2L and the SBS CRS-2P emulsions are used as a polymer-modified emulsion, and then unmodified emulsion, the CRS-2, is compared for the evaluation of chip seal performance. For the fog seal performance evaluation, two types of polymer-modified emulsions and one of unmodified emulsion, the CSS-1H, are employed. For chip seal study, the BBS tests are performed at 30, 60, 120, and 240 minutes of curing times with curing and testing temperatures of $15^{\circ}C$, $25^{\circ}C$, and $35^{\circ}C$. The fog seal tests are conducted at 30, 60, 90, 120, 180 minutes, and 24 hours with curing and testing temperatures of $25^{\circ}C$, $30^{\circ}C$, and $35^{\circ}C$. RESULTS AND CONCLUSIONS : Overall, chip seal emulsions and fog seal emulsions show the similar bond strength trend. At the same testing condition, polymer-modified emulsions show better bond strength than unmodified emulsions. Also, there is no significant difference between polymer-modified emulsions. One of important findings is that the most bond strength reaches their final bond strength within one hour of curing time. Therefore, the early curing time plays a vital role in the performance of chip seals and fog seals.

죽염을 함유한 에멀젼의 안정성과 피부 자극성 완화 (Stability of Emulsions containing a Bamboo Salt and its Relaxing Effect against a Skin Irritation)

  • 조완구;송영숙
    • 한국응용과학기술학회지
    • /
    • 제27권2호
    • /
    • pp.175-182
    • /
    • 2010
  • Various research on the surface of the skin and the relationship between epidermis and composition of ion have been performed. Traditionally, bamboo extract was used as an important material for enhancing healthy condition of a skin. Bamboo salt is well known as one of the most famous traditional medical treatments. In this study, we investigated the stability of P/S (Polyol-in-Silicone) emulsions containing a fair amount of bamboo salt in the range of 0.5~5.0 wt%. For improving the stability of emulsions, we varied the quantity of fatty alcohol and wax ester in emulsions and the stability was checked using DSC (Differential Scanning Calorimeter). We also studied the efficacy of treating the P/S emulsions containing bamboo salt. From the experiment, the emulsions show the mitigation of stimuli, enhancing the skin hydration and improving the appearance of the skin.

Influence of pH, Emulsifier Concentration, and Homogenization Condition on the Production of Stable Oil-in-Water Emulsion Droplets Coated with Fish Gelatin

  • Surh, Jeong-Hee
    • Food Science and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.999-1005
    • /
    • 2007
  • An oil-in-water (O/W) emulsion [20 wt% com oil, 0.5-6.0 wt% fish gelatin (FG), pH 3.0] was produced by high pressure homogenization, and the influence of pH, protein concentration, and homogenization condition on the formation of FG-stabilized emulsions was assessed by measuring particle size distribution, electrical charge, creaming stability, microstructure, and free FG concentration in the emulsions. Optical microscopy indicated that there were some large droplets ($d>10\;{\mu}m$) in all FG-emulsions, nevertheless, the amount of large droplets tended to decrease with increasing FG concentration. More than 90% of FG was present free in the continuous phase of the emulsions. To facilitate droplet disruption and prevent droplet coalescence within the homogenizer, homogenization time was adjusted in O/W emulsions stabilized by 2.0 or 4.0 wt% FG. However, the increase in the number of pass rather promoted droplet coalescence. This study has shown that the FG may have some limited use as a protein emulsifier in O/W emulsions.

Effects of Pre-Converted Nitrite from Red Beet and Ascorbic Acid on Quality Characteristics in Meat Emulsions

  • Choi, Yun-Sang;Kim, Tae-Kyung;Jeon, Ki-Hong;Park, Jong-Dae;Kim, Hyun-Wook;Hwang, Ko-Eun;Kim, Young-Boong
    • 한국축산식품학회지
    • /
    • 제37권2호
    • /
    • pp.288-296
    • /
    • 2017
  • We investigated the effects of fermented red beet extract and ascorbic acid on color development in meat emulsions. The pH of meat emulsions containing red beet extract decreased with an increase in the amount of extract added. The redness of the treated meat emulsions was higher than that of the control with no added nitrite or fermented red beet extract (p< 0.05), though the redness of the meat emulsions treated with fermented red beet extract only was lower than in that treated with both fermented red beet extract and ascorbic acid (p<0.05). The highest VBN, TBARS, and total viable count values were observed in the control, and these values in the meat emulsions treated with fermented red beet extract were higher than in that treated with both fermented red beet extract and ascorbic acid (p<0.05). E. coli and coliform bacteria were not found in any of the meat emulsions tested. Treatment T2, containing nitrite and ascorbic acid, had the highest overall acceptability score (p<0.05); however, there was no significant difference between the T2 treatment and the T6 treatment, which contained 10% pre-converted nitrite from red beet extract and 0.05% ascorbic acid (p>0.05). The residual nitrite content of the meat emulsions treated with ascorbic acid was lower than in those treated without ascorbic acid (p<0.05). Thus, the combination of fermented red beet extract and ascorbic acid could be a viable alternative to synthetic nitrite for the stability of color development in meat emulsions.