• Title/Summary/Keyword: empirical regression model

Search Result 846, Processing Time 0.029 seconds

An Empirical Study on the Determinants of Supply Chain Management Systems Success from Vendor's Perspective (참여자관점에서 공급사슬관리 시스템의 성공에 영향을 미치는 요인에 관한 실증연구)

  • Kang, Sung-Bae;Moon, Tae-Soo;Chung, Yoon
    • Asia pacific journal of information systems
    • /
    • v.20 no.3
    • /
    • pp.139-166
    • /
    • 2010
  • The supply chain management (SCM) systems have emerged as strong managerial tools for manufacturing firms in enhancing competitive strength. Despite of large investments in the SCM systems, many companies are not fully realizing the promised benefits from the systems. A review of literature on adoption, implementation and success factor of IOS (inter-organization systems), EDI (electronic data interchange) systems, shows that this issue has been examined from multiple theoretic perspectives. And many researchers have attempted to identify the factors which influence the success of system implementation. However, the existing studies have two drawbacks in revealing the determinants of systems implementation success. First, previous researches raise questions as to the appropriateness of research subjects selected. Most SCM systems are operating in the form of private industrial networks, where the participants of the systems consist of two distinct groups: focus companies and vendors. The focus companies are the primary actors in developing and operating the systems, while vendors are passive participants which are connected to the system in order to supply raw materials and parts to the focus companies. Under the circumstance, there are three ways in selecting the research subjects; focus companies only, vendors only, or two parties grouped together. It is hard to find researches that use the focus companies exclusively as the subjects probably due to the insufficient sample size for statistic analysis. Most researches have been conducted using the data collected from both groups. We argue that the SCM success factors cannot be correctly indentified in this case. The focus companies and the vendors are in different positions in many areas regarding the system implementation: firm size, managerial resources, bargaining power, organizational maturity, and etc. There are no obvious reasons to believe that the success factors of the two groups are identical. Grouping the two groups also raises questions on measuring the system success. The benefits from utilizing the systems may not be commonly distributed to the two groups. One group's benefits might be realized at the expenses of the other group considering the situation where vendors participating in SCM systems are under continuous pressures from the focus companies with respect to prices, quality, and delivery time. Therefore, by combining the system outcomes of both groups we cannot measure the system benefits obtained by each group correctly. Second, the measures of system success adopted in the previous researches have shortcoming in measuring the SCM success. User satisfaction, system utilization, and user attitudes toward the systems are most commonly used success measures in the existing studies. These measures have been developed as proxy variables in the studies of decision support systems (DSS) where the contribution of the systems to the organization performance is very difficult to measure. Unlike the DSS, the SCM systems have more specific goals, such as cost saving, inventory reduction, quality improvement, rapid time, and higher customer service. We maintain that more specific measures can be developed instead of proxy variables in order to measure the system benefits correctly. The purpose of this study is to find the determinants of SCM systems success in the perspective of vendor companies. In developing the research model, we have focused on selecting the success factors appropriate for the vendors through reviewing past researches and on developing more accurate success measures. The variables can be classified into following: technological, organizational, and environmental factors on the basis of TOE (Technology-Organization-Environment) framework. The model consists of three independent variables (competition intensity, top management support, and information system maturity), one mediating variable (collaboration), one moderating variable (government support), and a dependent variable (system success). The systems success measures have been developed to reflect the operational benefits of the SCM systems; improvement in planning and analysis capabilities, faster throughput, cost reduction, task integration, and improved product and customer service. The model has been validated using the survey data collected from 122 vendors participating in the SCM systems in Korea. To test for mediation, one should estimate the hierarchical regression analysis on the collaboration. And moderating effect analysis should estimate the moderated multiple regression, examines the effect of the government support. The result shows that information system maturity and top management support are the most important determinants of SCM system success. Supply chain technologies that standardize data formats and enhance information sharing may be adopted by supply chain leader organization because of the influence of focal company in the private industrial networks in order to streamline transactions and improve inter-organization communication. Specially, the need to develop and sustain an information system maturity will provide the focus and purpose to successfully overcome information system obstacles and resistance to innovation diffusion within the supply chain network organization. The support of top management will help focus efforts toward the realization of inter-organizational benefits and lend credibility to functional managers responsible for its implementation. The active involvement, vision, and direction of high level executives provide the impetus needed to sustain the implementation of SCM. The quality of collaboration relationships also is positively related to outcome variable. Collaboration variable is found to have a mediation effect between on influencing factors and implementation success. Higher levels of inter-organizational collaboration behaviors such as shared planning and flexibility in coordinating activities were found to be strongly linked to the vendors trust in the supply chain network. Government support moderates the effect of the IS maturity, competitive intensity, top management support on collaboration and implementation success of SCM. In general, the vendor companies face substantially greater risks in SCM implementation than the larger companies do because of severe constraints on financial and human resources and limited education on SCM systems. Besides resources, Vendors generally lack computer experience and do not have sufficient internal SCM expertise. For these reasons, government supports may establish requirements for firms doing business with the government or provide incentives to adopt, implementation SCM or practices. Government support provides significant improvements in implementation success of SCM when IS maturity, competitive intensity, top management support and collaboration are low. The environmental characteristic of competition intensity has no direct effect on vendor perspective of SCM system success. But, vendors facing above average competition intensity will have a greater need for changing technology. This suggests that companies trying to implement SCM systems should set up compatible supply chain networks and a high-quality collaboration relationship for implementation and performance.

The Relationship Between DEA Model-based Eco-Efficiency and Economic Performance (DEA 모형 기반의 에코효율성과 경제적 성과의 연관성)

  • Kim, Myoung-Jong
    • Journal of Environmental Policy
    • /
    • v.13 no.4
    • /
    • pp.3-49
    • /
    • 2014
  • Growing interest of stakeholders on corporate responsibilities for environment and tightening environmental regulations are highlighting the importance of environmental management more than ever. However, companies' awareness of the importance of environment is still falling behind, and related academic works have not shown consistent conclusions on the relationship between environmental performance and economic performance. One of the reasons is different ways of measuring these two performances. The evaluation scope of economic performance is relatively narrow and the performance can be measured by a unified unit such as price, while the scope of environmental performance is diverse and a wide range of units are used for measuring environmental performances instead of using a single unified unit. Therefore, the results of works can be different depending on the performance indicators selected. In order to resolve this problem, generalized and standardized performance indicators should be developed. In particular, the performance indicators should be able to cover the concepts of both environmental and economic performances because the recent idea of environmental management has expanded to encompass the concept of sustainability. Another reason is that most of the current researches tend to focus on the motive of environmental investments and environmental performance, and do not offer a guideline for an effective implementation strategy for environmental management. For example, a process improvement strategy or a market discrimination strategy can be deployed through comparing the environment competitiveness among the companies in the same or similar industries, so that a virtuous cyclical relationship between environmental and economic performances can be secured. A novel method for measuring eco-efficiency by utilizing Data Envelopment Analysis (DEA), which is able to combine multiple environmental and economic performances, is proposed in this report. Based on the eco-efficiencies, the environmental competitiveness is analyzed and the optimal combination of inputs and outputs are recommended for improving the eco-efficiencies of inefficient firms. Furthermore, the panel analysis is applied to the causal relationship between eco-efficiency and economic performance, and the pooled regression model is used to investigate the relationship between eco-efficiency and economic performance. The four-year eco-efficiencies between 2010 and 2013 of 23 companies are obtained from the DEA analysis; a comparison of efficiencies among 23 companies is carried out in terms of technical efficiency(TE), pure technical efficiency(PTE) and scale efficiency(SE), and then a set of recommendations for optimal combination of inputs and outputs are suggested for the inefficient companies. Furthermore, the experimental results with the panel analysis have demonstrated the causality from eco-efficiency to economic performance. The results of the pooled regression have shown that eco-efficiency positively affect financial perform ances(ROA and ROS) of the companies, as well as firm values(Tobin Q, stock price, and stock returns). This report proposes a novel approach for generating standardized performance indicators obtained from multiple environmental and economic performances, so that it is able to enhance the generality of relevant researches and provide a deep insight into the sustainability of environmental management. Furthermore, using efficiency indicators obtained from the DEA model, the cause of change in eco-efficiency can be investigated and an effective strategy for environmental management can be suggested. Finally, this report can be a motive for environmental management by providing empirical evidence that environmental investments can improve economic performance.

  • PDF

Effects of Private Insurance on Medical Expenditure (민간의료보험 가입이 의료이용에 미치는 영향)

  • Yun, Hee Suk
    • KDI Journal of Economic Policy
    • /
    • v.30 no.2
    • /
    • pp.99-128
    • /
    • 2008
  • Nearly all Koreans are insured through National Health Insurance(NHI). While NHI coverage is nearly universal, it is not complete. Coverage is largely limited to minimal level of hospital and physician expenses, and copayments are required in each case. As a result, Korea's public insurance system covers roughly 50% of overall individual health expenditures, and the remaining 50% consists of copayments for basic services, spending on services that are either not covered or poorly covered by the public system. In response to these gaps in the public system, 64% of the Korean population has supplemental private health insurance. Expansion of private health insurance raises negative externality issue. Like public financing schemes in other countries, the Korean system imposes cost-sharing on patients as a strategy for controlling utilization. Because most insurance policies reimburse patients for their out-of-pocket payments, supplemental insurance is likely to negate the impact of the policy, raising both total and public sector health spending. So far, most empirical analysis of supplemental health insurance to date has focused on the US Medigap programme. It is found that those with supplements apparently consume more health care. Two reasons for higher health care consumption by those with supplements suggest themselves. One is the moral hazard effect: by eliminating copayments and deductibles, supplements reduce the marginal price of care and induce additional consumption. The other explanation is that supplements are purchased by those who anticipate high health expenditures - adverse effect. The main issue addressed has been the separation of the moral hazard effect from the adverse selection one. The general conclusion is that the evidence on adverse selection based on observable variables is mixed. This article investigates the extent to which private supplementary insurance affect use of health care services by public health insurance enrollees, using Korean administrative data and private supplements related data collected through all relevant private insurance companies. I applied a multivariate two-part model to analyze the effects of various types of supplements on the likelihood and level of public health insurance spending and estimated marginal effects of supplements. Separate models were estimated for inpatients and outpatients in public insurance spending. The first part of the model estimated the likelihood of positive spending using probit regression, and the second part estimated the log of spending for those with positive spending. Use of a detailed information of individuals' public health insurance from administration data and of private insurance status from insurance companies made it possible to control for health status, the types of supplemental insurance owned by theses individuals, and other factors that explain spending variations across supplemental insurance categories in isolating the effects of supplemental insurance. Data from 2004 to 2006 were used, and this study found that private insurance increased the probability of a physician visit by less than 1 percent and a hospital admission by about 1 percent. However, supplemental insurance was not found to be associated with a bigger health care service utilization. Two-part models of health care utilization and expenditures showed that those without supplemental insurance had higher inpatient and outpatient expenditures than those with supplements, even after controlling for observable differences.

  • PDF

A Study on Users' Resistance toward ERP in the Pre-adoption Context (ERP 도입 전 구성원의 저항)

  • Park, Jae-Sung;Cho, Yong-Soo;Koh, Joon
    • Asia pacific journal of information systems
    • /
    • v.19 no.4
    • /
    • pp.77-100
    • /
    • 2009
  • Information Systems (IS) is an essential tool for any organizations. The last decade has seen an increasing body of knowledge on IS usage. Yet, IS often fails because of its misuse or non-use. In general, decisions regarding the selection of a system, which involve the evaluation of many IS vendors and an enormous initial investment, are made not through the consensus of employees but through the top-down decision making by top managers. In situations where the selected system does not satisfy the needs of the employees, the forced use of the selected IS will only result in their resistance to it. Many organizations have been either integrating dispersed legacy systems such as archipelago or adopting a new ERP (Enterprise Resource Planning) system to enhance employee efficiency. This study examines user resistance prior to the adoption of the selected IS or ERP system. As such, this study identifies the importance of managing organizational resistance that may appear in the pre-adoption context of an integrated IS or ERP system, explores key factors influencing user resistance, and investigates how prior experience with other integrated IS or ERP systems may change the relationship between the affecting factors and user resistance. This study focuses on organizational members' resistance and the affecting factors in the pre-adoption context of an integrated IS or ERP system rather than in the context of an ERP adoption itself or ERP post-adoption. Based on prior literature, this study proposes a research model that considers six key variables, including perceived benefit, system complexity, fitness with existing tasks, attitude toward change, the psychological reactance trait, and perceived IT competence. They are considered as independent variables affecting user resistance toward an integrated IS or ERP system. This study also introduces the concept of prior experience (i.e., whether a user has prior experience with an integrated IS or ERP system) as a moderating variable to examine the impact of perceived benefit and attitude toward change in user resistance. As such, we propose eight hypotheses with respect to the model. For the empirical validation of the hypotheses, we developed relevant instruments for each research variable based on prior literature and surveyed 95 professional researchers and the administrative staff of the Korea Photonics Technology Institute (KOPTI). We examined the organizational characteristics of KOPTI, the reasons behind their adoption of an ERP system, process changes caused by the introduction of the system, and employees' resistance/attitude toward the system at the time of the introduction. The results of the multiple regression analysis suggest that, among the six variables, perceived benefit, complexity, attitude toward change, and the psychological reactance trait significantly influence user resistance. These results further suggest that top management should manage the psychological states of their employees in order to minimize their resistance to the forced IS, even in the new system pre-adoption context. In addition, the moderating variable-prior experience was found to change the strength of the relationship between attitude toward change and system resistance. That is, the effect of attitude toward change in user resistance was significantly stronger in those with prior experience than those with no prior experience. This result implies that those with prior experience should be identified and provided with some type of attitude training or change management programs to minimize their resistance to the adoption of a system. This study contributes to the IS field by providing practical implications for IS practitioners. This study identifies system resistance stimuli of users, focusing on the pre-adoption context in a forced ERP system environment. We have empirically validated the proposed research model by examining several significant factors affecting user resistance against the adoption of an ERP system. In particular, we find a clear and significant role of the moderating variable, prior ERP usage experience, in the relationship between the affecting factors and user resistance. The results of the study suggest the importance of appropriately managing the factors that affect user resistance in organizations that plan to introduce a new ERP system or integrate legacy systems. Moreover, this study offers to practitioners several specific strategies (in particular, the categorization of users by their prior usage experience) for alleviating the resistant behaviors of users in the process of the ERP adoption before a system becomes available to them. Despite the valuable contributions of this study, there are also some limitations which will be discussed in this paper to make the study more complete and consistent.

The Relationship between Internet Search Volumes and Stock Price Changes: An Empirical Study on KOSDAQ Market (개별 기업에 대한 인터넷 검색량과 주가변동성의 관계: 국내 코스닥시장에서의 산업별 실증분석)

  • Jeon, Saemi;Chung, Yeojin;Lee, Dongyoup
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.81-96
    • /
    • 2016
  • As the internet has become widespread and easy to access everywhere, it is common for people to search information via online search engines such as Google and Naver in everyday life. Recent studies have used online search volume of specific keyword as a measure of the internet users' attention in order to predict disease outbreaks such as flu and cancer, an unemployment rate, and an index of a nation's economic condition, and etc. For stock traders, web search is also one of major information resources to obtain data about individual stock items. Therefore, search volume of a stock item can reflect the amount of investors' attention on it. The investor attention has been regarded as a crucial factor influencing on stock price but it has been measured by indirect proxies such as market capitalization, trading volume, advertising expense, and etc. It has been theoretically and empirically proved that an increase of investors' attention on a stock item brings temporary increase of the stock price and the price recovers in the long run. Recent development of internet environment enables to measure the investor attention directly by the internet search volume of individual stock item, which has been used to show the attention-induced price pressure. Previous studies focus mainly on Dow Jones and NASDAQ market in the United States. In this paper, we investigate the relationship between the individual investors' attention measured by the internet search volumes and stock price changes of individual stock items in the KOSDAQ market in Korea, where the proportion of the trades by individual investors are about 90% of the total. In addition, we examine the difference between industries in the influence of investors' attention on stock return. The internet search volume of stocks were gathered from "Naver Trend" service weekly between January 2007 and June 2015. The regression model with the error term with AR(1) covariance structure is used to analyze the data since the weekly prices in a stock item are systematically correlated. The market capitalization, trading volume, the increment of trading volume, and the month in which each trade occurs are included in the model as control variables. The fitted model shows that an abnormal increase of search volume of a stock item has a positive influence on the stock return and the amount of the influence varies among the industry. The stock items in IT software, construction, and distribution industries have shown to be more influenced by the abnormally large internet search volume than the average across the industries. On the other hand, the stock items in IT hardware, manufacturing, entertainment, finance, and communication industries are less influenced by the abnormal search volume than the average. In order to verify price pressure caused by investors' attention in KOSDAQ, the stock return of the current week is modelled using the abnormal search volume observed one to four weeks ahead. On average, the abnormally large increment of the search volume increased the stock return of the current week and one week later, and it decreased the stock return in two and three weeks later. There is no significant relationship with the stock return after 4 weeks. This relationship differs among the industries. An abnormal search volume brings particularly severe price reversal on the stocks in the IT software industry, which are often to be targets of irrational investments by individual investors. An abnormal search volume caused less severe price reversal on the stocks in the manufacturing and IT hardware industries than on average across the industries. The price reversal was not observed in the communication, finance, entertainment, and transportation industries, which are known to be influenced largely by macro-economic factors such as oil price and currency exchange rate. The result of this study can be utilized to construct an intelligent trading system based on the big data gathered from web search engines, social network services, and internet communities. Particularly, the difference of price reversal effect between industries may provide useful information to make a portfolio and build an investment strategy.

The Impacts of Chinese Seaborne Trade Volume on The World Economy (중국 품목별 수출입이 세계 경제에 미치는 영향 실증분석)

  • Ahn, Young-Gyun;Lee, Min-Kyu
    • Korea Trade Review
    • /
    • v.42 no.6
    • /
    • pp.111-129
    • /
    • 2017
  • According to the World Bank statistics, China's contribution to global economic growth during the year of 2013-2016 was estimated at 31.6 percent. This figure is even larger than 29.0 percent, the contribution by summing each contribution of the United States, EU and Japan. The Chinese commodity trade accounts for up to 11.5 percent of world trade volume. Thus, we can consider that the Chinese economy has a strong influence on the global economy. The primary purpose of this study is to analyze the contribution level of Chinese seaborne trade volume on world economy. First, this study conducted a time-lag analysis using Moran test, so we can find that China's level of contribution to global economic growth varies from time to time. The contribution of the first phase (1999-2007) was nearly three times higher than the contributions from the second phase (2008-2016), suggesting that the overall contraction of the global trade volume starting from the subprime mortgage crisis in 2008 has continued until recently and recovery has not even occurred. Second, using the econometrics model, this study conducted an regression analysis of the impact of Chinese imports and exports in chemicals, grain, steel, crude oil, and container on global economic growth. Fixed effects model with time series data has been applied to examine the effect of Chinese seaborne trade volume on global economic growth. According to the empirical analysis of this study, China's exports of steel products, exports of container, imports of containers, imports of crude oil and imports of grain have significant contributions to global economic growth. Estimates of China's exports of steel products, exports of container, imports of containers, imports of crude oil and imports of grain are 1.023, 1.020, 1.019, 1.007 and 1.006, respectively. For example, the estimated value 1.023 of China's exports of steel products means that the growth rate can be 1.023 times higher than the current world GDP growth rate if Chinese seaborne trade volume of exports of steel products increased by one unit (one million tons). This study concludes that the expansion of China's imports and exports should be realized first to increase the global GDP growth rate. The expansion of Chinese trade can lead to a simultaneous stimulus of production and consumption in China, which can even lead to global economic growth ultimately. Thus, depending on how much China's trade will be broaden in the future, the width of global economic growth can be determined.

  • PDF

Effects of Service Leadership on Job Satisfaction in Family Restaurant (외식산업에 있어서 서비스 리더십이 직무만족에 미치는 영향 - 패밀리레스토랑을 중심으로 -)

  • Jung, Hyun-Young;Yang, Il-Sun;Kim, Hyun-Ah
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.5
    • /
    • pp.667-673
    • /
    • 2005
  • The purposes of this study were 1) to analyze the preference of leadership style among ${\lceil}$Transformational leadership$\rfloor$ and ${\lceil}$Service leadership$\rfloor$, 2) to examine the differences of the job satisfaction between the high level of service leadership group and low level of the service leadership group and 3) to testify the hypothesis that the service leadership and its 4 elements (belief, attitude, ability, insight) affect the job satisfaction. The questionnaires were developed to measure the service leadership, the preference of leadership style (transfer-mational leadership and service leadership) and Job satisfaction. The surveys were distributed to 120 managers and employees in the family restaurant in Korea, and 104 questionnaires were responded (response rate: $86.7\%$). The SPSS 12.0 package program was used to conduct the descriptive analysis, correlation analysis, t-test and multiple regression analysis. The result of leadership style preference showed the followers preferred the service leadership $(75.0\%)$ to the transformational leadership $(25.0\%)$. Comparing the job satisfaction of high level of service leadership group and that of low level of service leadership group, the job satisfaction of high level of service leadership group was significantly (p<0.001) higher than that of low level of service leadership group (high level of service leadership group: 4.03, low service leadership group: 3.27, measured on a 5-point likert scale). All three factors of job satisfaction (human factor, service system and company image) in high level of leadership group were significantly (p<0.001) higher than those of lower level of service leadership group. The result of multiple regression analysis presented that the service leadership and it's 4 elements (concept, mind, skill, insight) have significant (p=0.000) effects on the job satisfaction. As a conclusion, we examined theoretical framework of service leadership model and testified the applicability in the field of family restaurants. But the service leadership was the new conceptual theory, so there should be the more empirical studies on managers and employees in the service industry.

Smart Store in Smart City: The Development of Smart Trade Area Analysis System Based on Consumer Sentiments (Smart Store in Smart City: 소비자 감성기반 상권분석 시스템 개발)

  • Yoo, In-Jin;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.25-52
    • /
    • 2018
  • This study performs social network analysis based on consumer sentiment related to a location in Seoul using data reflecting consumers' web search activities and emotional evaluations associated with commerce. The study focuses on large commercial districts in Seoul. In addition, to consider their various aspects, social network indexes were combined with the trading area's public data to verify factors affecting the area's sales. According to R square's change, We can see that the model has a little high R square value even though it includes only the district's public data represented by static data. However, the present study confirmed that the R square of the model combined with the network index derived from the social network analysis was even improved much more. A regression analysis of the trading area's public data showed that the five factors of 'number of market district,' 'residential area per person,' 'satisfaction of residential environment,' 'rate of change of trade,' and 'survival rate over 3 years' among twenty two variables. The study confirmed a significant influence on the sales of the trading area. According to the results, 'residential area per person' has the highest standardized beta value. Therefore, 'residential area per person' has the strongest influence on commercial sales. In addition, 'residential area per person,' 'number of market district,' and 'survival rate over 3 years' were found to have positive effects on the sales of all trading area. Thus, as the number of market districts in the trading area increases, residential area per person increases, and as the survival rate over 3 years of each store in the trading area increases, sales increase. On the other hand, 'satisfaction of residential environment' and 'rate of change of trade' were found to have a negative effect on sales. In the case of 'satisfaction of residential environment,' sales increase when the satisfaction level is low. Therefore, as consumer dissatisfaction with the residential environment increases, sales increase. The 'rate of change of trade' shows that sales increase with the decreasing acceleration of transaction frequency. According to the social network analysis, of the 25 regional trading areas in Seoul, Yangcheon-gu has the highest degree of connection. In other words, it has common sentiments with many other trading areas. On the other hand, Nowon-gu and Jungrang-gu have the lowest degree of connection. In other words, they have relatively distinct sentiments from other trading areas. The social network indexes used in the combination model are 'density of ego network,' 'degree centrality,' 'closeness centrality,' 'betweenness centrality,' and 'eigenvector centrality.' The combined model analysis confirmed that the degree centrality and eigenvector centrality of the social network index have a significant influence on sales and the highest influence in the model. 'Degree centrality' has a negative effect on the sales of the districts. This implies that sales decrease when holding various sentiments of other trading area, which conflicts with general social myths. However, this result can be interpreted to mean that if a trading area has low 'degree centrality,' it delivers unique and special sentiments to consumers. The findings of this study can also be interpreted to mean that sales can be increased if the trading area increases consumer recognition by forming a unique sentiment and city atmosphere that distinguish it from other trading areas. On the other hand, 'eigenvector centrality' has the greatest effect on sales in the combined model. In addition, the results confirmed a positive effect on sales. This finding shows that sales increase when a trading area is connected to others with stronger centrality than when it has common sentiments with others. This study can be used as an empirical basis for establishing and implementing a city and trading area strategy plan considering consumers' desired sentiments. In addition, we expect to provide entrepreneurs and potential entrepreneurs entering the trading area with sentiments possessed by those in the trading area and directions into the trading area considering the district-sentiment structure.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.

A PLS Path Modeling Approach on the Cause-and-Effect Relationships among BSC Critical Success Factors for IT Organizations (PLS 경로모형을 이용한 IT 조직의 BSC 성공요인간의 인과관계 분석)

  • Lee, Jung-Hoon;Shin, Taek-Soo;Lim, Jong-Ho
    • Asia pacific journal of information systems
    • /
    • v.17 no.4
    • /
    • pp.207-228
    • /
    • 2007
  • Measuring Information Technology(IT) organizations' activities have been limited to mainly measure financial indicators for a long time. However, according to the multifarious functions of Information System, a number of researches have been done for the new trends on measurement methodologies that come with financial measurement as well as new measurement methods. Especially, the researches on IT Balanced Scorecard(BSC), concept from BSC measuring IT activities have been done as well in recent years. BSC provides more advantages than only integration of non-financial measures in a performance measurement system. The core of BSC rests on the cause-and-effect relationships between measures to allow prediction of value chain performance measures to allow prediction of value chain performance measures, communication, and realization of the corporate strategy and incentive controlled actions. More recently, BSC proponents have focused on the need to tie measures together into a causal chain of performance, and to test the validity of these hypothesized effects to guide the development of strategy. Kaplan and Norton[2001] argue that one of the primary benefits of the balanced scorecard is its use in gauging the success of strategy. Norreklit[2000] insist that the cause-and-effect chain is central to the balanced scorecard. The cause-and-effect chain is also central to the IT BSC. However, prior researches on relationship between information system and enterprise strategies as well as connection between various IT performance measurement indicators are not so much studied. Ittner et al.[2003] report that 77% of all surveyed companies with an implemented BSC place no or only little interest on soundly modeled cause-and-effect relationships despite of the importance of cause-and-effect chains as an integral part of BSC. This shortcoming can be explained with one theoretical and one practical reason[Blumenberg and Hinz, 2006]. From a theoretical point of view, causalities within the BSC method and their application are only vaguely described by Kaplan and Norton. From a practical consideration, modeling corporate causalities is a complex task due to tedious data acquisition and following reliability maintenance. However, cause-and effect relationships are an essential part of BSCs because they differentiate performance measurement systems like BSCs from simple key performance indicator(KPI) lists. KPI lists present an ad-hoc collection of measures to managers but do not allow for a comprehensive view on corporate performance. Instead, performance measurement system like BSCs tries to model the relationships of the underlying value chain in cause-and-effect relationships. Therefore, to overcome the deficiencies of causal modeling in IT BSC, sound and robust causal modeling approaches are required in theory as well as in practice for offering a solution. The propose of this study is to suggest critical success factors(CSFs) and KPIs for measuring performance for IT organizations and empirically validate the casual relationships between those CSFs. For this purpose, we define four perspectives of BSC for IT organizations according to Van Grembergen's study[2000] as follows. The Future Orientation perspective represents the human and technology resources needed by IT to deliver its services. The Operational Excellence perspective represents the IT processes employed to develop and deliver the applications. The User Orientation perspective represents the user evaluation of IT. The Business Contribution perspective captures the business value of the IT investments. Each of these perspectives has to be translated into corresponding metrics and measures that assess the current situations. This study suggests 12 CSFs for IT BSC based on the previous IT BSC's studies and COBIT 4.1. These CSFs consist of 51 KPIs. We defines the cause-and-effect relationships among BSC CSFs for IT Organizations as follows. The Future Orientation perspective will have positive effects on the Operational Excellence perspective. Then the Operational Excellence perspective will have positive effects on the User Orientation perspective. Finally, the User Orientation perspective will have positive effects on the Business Contribution perspective. This research tests the validity of these hypothesized casual effects and the sub-hypothesized causal relationships. For the purpose, we used the Partial Least Squares approach to Structural Equation Modeling(or PLS Path Modeling) for analyzing multiple IT BSC CSFs. The PLS path modeling has special abilities that make it more appropriate than other techniques, such as multiple regression and LISREL, when analyzing small sample sizes. Recently the use of PLS path modeling has been gaining interests and use among IS researchers in recent years because of its ability to model latent constructs under conditions of nonormality and with small to medium sample sizes(Chin et al., 2003). The empirical results of our study using PLS path modeling show that the casual effects in IT BSC significantly exist partially in our hypotheses.