• 제목/요약/키워드: emergency core cooling (ECC)

검색결과 9건 처리시간 0.025초

A Study on Design of the Trip Computer for ECC System Based on Dynamic Safety System

  • Kim, Seog-Nam;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.316-327
    • /
    • 2000
  • The Emergency Core Cooling System in current nuclear power plants typically has a considerable number of complex functions and largely cumbersome operator interfaces. Functions for initiation, switch-over between various phases of operation, interlocks, monitoring, and alarming are usually performed by relays and analog comparator logic which are difficult to maintain and test. To improve problems of an analog based ECC (Emergency Core Cooling) System, the trip computer for ECCS based on Dynamic Safety System (DSS) is implemented. The DSS is a computer based reactor protection system that has fail-safe nature and performs a dynamic self-testing. The most important feature of the DSS is the introduction of test signal that send the system into a tripped state. The test signals are interleaved with the plant signals to produce an output which switches between a tripped and health state. The dynamic operation is a key feature of the failsafe design of the system. In this work, a possible implementation of the DSS using PLC is presented for a CANDU Reactor. ECC System of the CANDU Reactor is selected as the reference system.

  • PDF

ADVANCED DVI+

  • Kwon, Tae-Soon;Lee, S.T.;Euh, D.J.;Chu, I.C.;Youn, Y.J.
    • Nuclear Engineering and Technology
    • /
    • 제44권7호
    • /
    • pp.727-734
    • /
    • 2012
  • A new advanced safety feature of DVI+ (Direct Vessel Injection Plus) for the APR+ (Advanced Power Reactor Plus), to mitigate the ECC (Emergency Core Cooling) bypass fraction and to prevent switching an ECC outlet to a break flow inlet during a DVI line break, is presented for an advanced DVI system. In the current DVI system, the ECC water injected into the downcomer is easily shifted to the broken cold leg by a high steam cross flow which comes from the intact cold legs during the late reflood phase of a LBLOCA (Large Break Loss Of Coolant Accident)For the new DVI+ system, an ECBD (Emergency Core Barrel Duct) is installed on the outside of a core barrel cylinder. The ECBD has a gap (From the core barrel wall to the ECBD inner wall to the radial direction) of 3/25~7/25 of the downcomer annulus gap. The DVI nozzle and the ECBD are only connected by the ECC water jet, which is called a hydrodynamic water bridge, during the ECC injection period. Otherwise these two components are disconnected from each other without any pipes inside the downcomer. The ECBD is an ECC downward isolation flow sub-channel which protects the ECC water from the high speed steam crossflow in the downcomer annulus during a LOCA event. The injected ECC water flows downward into the lower downcomer through the ECBD without a strong entrainment to a steam cross flow. The outer downcomer annulus of the ECBD is the major steam flow zone coming from the intact cold leg during a LBLOCA. During a DVI line break, the separated DVI nozzle and ECBD have the effect of preventing the level of the cooling water from being lowered in the downcomer due to an inlet-outlet reverse phenomenon at the lowest position of the outlet of the ECBD.

Direct ECC Bypass Phenomena in the MIDAS Test Facility During LBLOCA Reflood Phase

  • B.J. Yun;T.S. Kwon;D.J. Euh;I.C. Chu;Park, W.M.;C.H. Song;Park, J.K.
    • Nuclear Engineering and Technology
    • /
    • 제34권5호
    • /
    • pp.421-432
    • /
    • 2002
  • As one of the advanced design features of the APR1400, direct vessel injection (DVI) system is being considered instead of conventional cold leg injection (CLI) system. It is known that the DVI system greatly enhances the reliability of the emergency core cooling (ECC) system. However, there is still a dispute on its performance in terms of water delivery to the reactor core during the reflood phase of a large-break loss-of-coolant accident (LOCA). Thus, experimental validation is under progress. In this paper, test results of direct ECC bypass performed in the steam-water test facility tailed MIDAS (Multi-dimensional Investigation in Downcomer Annulus Simulation) are presented. The test condition is determined, based on the preliminary analysis of TRAC code, by applying the ‘modified linear scaling method’with the l/4.93 length scale . From the tests, ECC direct bypass fraction, steam condensation rate and information on the flow distribution in the upper annulus downcomer region are obtained.

대형냉각재 상실사고 재관수 기간 동안, 차세대 원자로 강수부 내의 열수력 현상 모의를 위한 실험장치 척도해석 (Scaling Analysis of Thermal Hydraulics Phenomena in the Nuclear Reactor Vessel Downcomer during the Reflood Phase of LBLOCA)

  • 윤병조;송철화;권태순;어동진;주인철;윤영중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.821-827
    • /
    • 2001
  • As one of the advanced design features of the Korea next generation reactor, direct vessel injection (DVI) system is being considered instead of conventional cold leg injection (CLl) system. It is known that the DVI system greatly enhances the reliability of the emergency core cooling (ECC) system. However, there is still a dispute on its performance in terms of water delivery to the reactor core during the reflood period of a large-break loss-of-coolant accident (LOCA). Thus, experimental validation is under progress. In this paper, a new scaling method, using time and velocity reduced linear scaling law, is suggested for the design of a scaled-down experimental facility to investigate the direct ECC bypass phenomena in PWR downcomer.

  • PDF

MODELING OF A BUOYANCY-DRIVEN FLOW EXPERIMENT IN PRESSURIZED WATER REACTORS USING CFD-METHODS

  • Hohne, Thomas;Kliem, Soren
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.327-336
    • /
    • 2007
  • The influence of density differences on the mixing of the primary loop inventory and the Emergency Core Cooling (ECC) water in the downcomer of a Pressurised Water Reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. ROCOM is a 1:5 scaled model of a German PWR, and has been designed for coolant mixing studies. It is equipped with advanced instrumentation, which delivers high-resolution information for temperature or boron concentration fields. This paper presents a ROCOM experiment in which water with higher density was injected into a cold leg of the reactor model. Wire-mesh sensors measuring the tracer concentration were installed in the cold leg and upper and lower part of the downcomer. The experiment was run with 5% of the design flow rate in one loop and 10% density difference between the ECC and loop water especially for the validation of the Computational Fluid Dynamics (CFD) software ANSYS CFX. A mesh with two million control volumes was used for the calculations. The effects of turbulence on the mean flow were modelled with a Reynolds stress turbulence model. The results of the experiment and of the numerical calculations show that mixing is dominated by buoyancy effects: At higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this circumferential propagation. Therefore, density effects play an important role during natural convection with ECC injection in PWRs. ANSYS CFX was able to predict the observed flow patterns and mixing phenomena quite well.

A Preliminary Analysis of Large Loss-of-Coolant Induced by Emergency Core Coolant Pipe Break in CANDU-600 Nuclear Power Plant

  • Ion, Robert-Aurelian;Cho, Yong-Jin;Kim, In-Goo;Kim, Kyun-Tae;Lee, Jong-In
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.435-440
    • /
    • 1996
  • Large Loss-of-Coolant Accidents analyzed in Final Safety Analysis Reports are usually covered by Reactor Inlet Header. Reactor Outlet Header and Primary Pump Suction breaks as representative cases. In this study we analyze the total (guillotine) break of an Emergency Core Cooling System (ECCS) pipe located at the ECCS injection point into the Primary Heat Transport System (PHTS). It was expected that thermal-hydraulic behaviors in the PHT and ECC systems are different from those of a Reactor Inlet Header break, having an equivalent break size. The main purpose of this study is to get insights on the differences occurred between the two cases and to assess these differences from the phenomenon behavior point of view. It was also investigated whether the ECCS line break analysis results could be covered by header break analysis results. The study reveals that as the intact loop has almost the same behavior in both analyzed cases. broken loop behavior is different mostly regarding sheath temperature in the critical core pass and pressure decrease in the broken Reactor Inlet Header. Differences are also met in the ECCS behavior and in event sequences timings.

  • PDF

월성 원자력 발전소 2,3,4호기에서의 LOCA 사고후 보조건물의 방사선장 평가 (Assessment of Post-LOCA Radiation Fields in Service Building Areas for Wolsong 2, 3, and 4 Nuclear Power Plants)

  • 진영권;김용일
    • Journal of Radiation Protection and Research
    • /
    • 제20권1호
    • /
    • pp.53-64
    • /
    • 1995
  • 월성 원자력발전소 2,3,4 호기의 보조건물 주요 지역에서 냉각재 다량상h7사고 (large LOCA) 후의 방사선장을 평가하였다. 핵분열 생성물의 총량은 ORIGEN2 코드를 사용하여 계산하였고 선원항은 2중고장 시나리오, 즉 LOCA 사고후 비상노심냉각 (ECC) 계통의 고장이 결부된 사고시의 방사능 방출에 근거하였다. 원자로건물, 보조건물 및 ECC 계통의 구조모형을 QAD-CG 모델에 포함하여 계산하였다. 사고시점부터 90일 경과시까지 시간대 별로 선량율과 누적선량을 계산하였다. 결과적으로, 연속출입이 요구되는 중요지역에서의 방사선장은 충분히 낮은 것으로 평가되었다. 그러나, 일부구역에서는 제한적인 출입을 허용할 정도로 상대적으로 높은 방사선장을 나타내었다.

  • PDF

월성원자력발전소 비상노심냉각계통의 수격현상 해석

  • 이중섭;오광석;김선철;오종필;김도현
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.67-72
    • /
    • 1996
  • 수격현상(Waterhammer)으로 인한 과도압력하중은 월성원자력발전소 비상노심냉각계통 (Emergency Core Cooling System : ECCS) 설계의 주요 고려사항이다. 비상노심냉각계통은 특수안전계통으로서 냉각재상실사고(Loss of Coolant Accident : LOCA)후 일차열수송계통을 다시 채워주고 핵연료 손상을 막기위해 노심으로부터 잔열 및 붕괴열을 제거한다. 일차열수송계통으로의 비상냉각수 주입은 고압주입, 중압주입, 저압주입 3 단계로 주입된다. 과도압력이 발생될 것으로 예상되는 고압주입과 중압주입에 대한 6가지 사례들이 ECCS의 배관과 지지대 설계를 위해 고려되었다. 모든 사례에 대한 비상노심냉각계통의 과도압력 현상은 PTRAN 코드에 의해 해석 되었고 해석된 최고과도압력은 설계압력보다 작음을 알게 되었다. 모든 사례의 최고압력과 최고차압은 비상노심냉각계통 배관 및 지지대 설계를 위한 응력해석 자료로서 사용될 것이다.

  • PDF

A Numerical Study on the Effect of DVI Nozzle Location on the Thermal Mixing in RVDC

  • Kang, Hyung-Seok;Cho, Bong-Hyun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.283-288
    • /
    • 1996
  • Direct safety injection into the reactor vessel downcomer annulus(DVI) is a fundamental feature of the KNGR(Korean Next Generation Reactor) four-train safety injection system. The numerical analysis of thermal mixing of ECC(Emergency Core Cooling) water through DVI with the water in the RVDC(Reactor Vessel Downcomer) annulus has been performed, in order to study the impact of nozzle location on the pressurized thermal shock and safety analysis. The results of this study show that the thermal mixing due to the natural circulation induced by the limiting accident conditions is sufficient to prevent temperature in the RVDC from dropping to the level of concern for PTS. When the DVI nozzle is located right above the cold leg, the temperature distribution at the outlet of flow field is most uniform. The tool used for numerical analysis is CFDS-FLOW3D.

  • PDF