Embedded systems are becoming more popular as many embedded platforms have become more affordable. It offers a compact solution for many different problems including computer vision applications. Texture classification can be used to solve various problems, and implementing it in embedded platforms will help in deploying these applications into the market. This paper proposes to deploy the texture classification algorithms onto the embedded computer vision (ECV) platform. Two algorithms are compared; grey level co-occurrence matrices (GLCM) and Gabor filters. Experimental results show that raw GLCM on MATLAB could achieves 50ms, being the fastest algorithm on the PC platform. Classification speed achieved on PC and ECV platform, in C, is 43ms and 3708ms respectively. Raw GLCM could achieve only 90.86% accuracy compared to the combination feature (GLCM and Gabor filters) at 91.06% accuracy. Overall, evaluating all results in terms of classification speed and accuracy, raw GLCM is more suitable to be implemented onto the ECV platform.
Recently, on-device artificial intelligence (AI) solutions using mobile devices and embedded edge devices have emerged in various fields, such as computer vision, to address network traffic burdens, low-energy operations, and security problems. Although vision transformer deep learning models have outperformed conventional convolutional neural network (CNN) models in computer vision, they require more computations and parameters than CNN models. Thus, they are not directly applicable to embedded edge devices with limited hardware resources. Many researchers have proposed various model compression methods or lightweight architectures for vision transformers; however, there are only a few studies evaluating the effects of model compression techniques of vision transformers on performance. Regarding this problem, this paper presents a performance evaluation of vision transformers on embedded platforms. We investigated the behaviors of three vision transformers: DeiT, LeViT, and MobileViT. Each model performance was evaluated by accuracy and inference time on edge devices using the ImageNet dataset. We assessed the effects of the quantization method applied to the models on latency enhancement and accuracy degradation by profiling the proportion of response time occupied by major operations. In addition, we evaluated the performance of each model on GPU and EdgeTPU-based edge devices. In our experimental results, LeViT showed the best performance in CPU-based edge devices, and DeiT-small showed the highest performance improvement in GPU-based edge devices. In addition, only MobileViT models showed performance improvement on EdgeTPU. Summarizing the analysis results through profiling, the degree of performance improvement of each vision transformer model was highly dependent on the proportion of parts that could be optimized in the target edge device. In summary, to apply vision transformers to on-device AI solutions, either proper operation composition and optimizations specific to target edge devices must be considered.
비전 시스템은 카메라를 통하여 획득한 이미지 정보를 캡쳐 후, 이를 분석하여 물체를 인식하는 것으로서, 차종 분류를 포함 한 다양한 산업현장에서 사용하고 있다. 이런 필요성으로 인하여 차종 분류를 위한 많은 연구가 이루어지고 있으나 복잡한 계산과정으로 인하여 처리 시간이 많이 소요되는 단점이 있다. 본 논문에서는 임베디드 시스템을 기반으로 하는 Vision Box를 설계하고 이를 사용한 차종인식 시스템을 제안하였다. 제안한 Vision Box의 성능을 자동차의 차종분류를 통한 사전 테스트 결과 최적 화된 환경 조건에서는 100%의 차종별 인식률을 보였으며, 조명 및 회전의 작은 변화에 따른 테스트에서 차종인식은 가능하였으나, 패턴점수가 낮아졌다. 제안한 Vision Box 시스템을 산업 현장에 적용한 결과 처리시간, 인식률 등에서 산업체의 요구 조건을 만족 할 수 있음을 확인할 수 일었다.
Becanovic, Vlatako;Matsuo, Takayuki;Stocker, Alan A.
한국정보기술응용학회:학술대회논문집
/
한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
/
pp.285-288
/
2005
We propose a novel programmable miniature vision module based on a custom designed analog VLSI (aVLSI) chip. The vision module consists of the optical flow vision sensor embedded with commercial off-the-shelves digital hardware; in our case is the Intel XScale PXA270 processor enforced with a programmable gate array device. The aVLSI sensor provides gray-scale imager data as well as smooth optical flow estimates, thus each pixel gives a triplet of information that can be continuously read out as three independent images. The particular computational architecture of the custom designed sensor, which is fully parallel and also analog, allows for efficient real-time estimations of the smooth optical flow. The Intel XScale PXA270 controls the sensor read-out and furthermore allows, together with the programmable gate array, for additional higher level processing of the intensity image and optical flow data. It also provides the necessary standard interface such that the module can be easily programmed and integrated into different vision systems, or even form a complete stand-alone vision system itself. The low power consumption, small size and flexible interface of the proposed vision module suggests that it could be particularly well suited as a vision system in an autonomous robotics platform and especially well suited for educational projects in the robotic sciences.
본 연구의 목적은 카메라를 통하여 획득한 이미지 정보를 캡쳐 후, 이를 분석하여 물체의 동작을 인식하는 Vision Box를 설계하는데 목적이 있다. 본 연구는 고객 즉, 사용자의 요구조건을 최대한 반영하여 구현하고자 하였다. 구현하고자 하는 Vision Box 시스템은 특별한 외부의 부가적인 센서를 사용하지 않고 카메라를 통하여 들어오는 화상 정보만을 분석하여 물체를 식별할 수 있도록 하였다. 그리고 PLC와의 통신과 원격지에서 Vision Box를 제어 할 수 있는 방법도 지원할 수 있도록 하였다. 본 연구에서 제안한 Vision Box의 성능을 자동차의 차종분류를 통한 성능분석 결과 최적화 된 환경조건에서는 100%의 차종별 인식률을 보였으며, 조명 및 잡음과 회전의 작은 변화에 따른 테스트에서 차종인식은 가능하였으나, 패턴점수가 낮아졌다. 따라서 제안한 Vision Box 시스템이 다양한 산업분야에 적용될 수 있을 것이라 생각된다.
Many computer vision algorithms are computationally expensive and require a lot of computing resources. Recently, owing to machine learning technology and high-performance embedded systems, vision processing applications, such as object detection, face recognition, and visual inspection, are widely used. However, on-devices need to use their resources to handle powerful vision works with low power consumption in heterogeneous environments. Consequently, global manufacturers are trying to lock many developers into their ecosystem, providing integrated low-power chips and dedicated vision libraries. Khronos Group-an international standard organization-has released the OpenVX standard for high-performance/low-power vision processing in heterogeneous on-device systems. This paper describes vision libraries for the embedded systems and presents the OpenVX standard along with related trends for on-device vision system.
본 연구의 목적은 카메라를 통하여 획득한 이미지 정보를 캡쳐 후, 이를 분석하여 물체의 동작을 인식하는 Vision Box를 설계하는데 목적이 있다. 본 연구는 고객 즉, 사용자의 요구조건을 최대한 반영하여 구현하고자 하였다. 구현하고자 하는 Vision Box 시스템은 특별한 외부의 부가적인 센서를 사용하지 않고 카메라를 통하여 들어오는 화상 정보만을 분석하여 물체를 식별할 수 있도록 하였다. 그리고 PLC와의 통신과 원격지에서 Vision Box를 제어할 수 있는 방법도 지원할 수 있도록 하였다. 본 연구에서 제안한 Vision Box의 성능을 자동차 엔진패턴 검사를 통하여 검증할 수 있었으며 제안한 Vision Box 시스템이 다양한 산업분야에 적용될 수 있을 것이라 생각된다.
지능형 로봇 기술은 더 나은 생활을 위한 현대 기술의 집약체이다. 산업, 생활, 정밀 기술 등 다양한 분야에서 응용이 가능한 확장성 넓은 분야이다. 해당 분야의 추적 기술은 LIDAR를 활용하는 방향으로 활발한 연구가 진행 중이다. LIDAR는 사방의 거리를 정확하게 측정할 수 있는 유용한 센서지만, LIDAR만으로는 로봇의 성능을 최대화할 수는 없다. 본 논문은 LIDAR 추적을 연장하여 Vision 기술의 융합에 관련하여 서술한다. Vision 기술의 융합을 통한 향상된 기능을 가지는 추적 로봇 설계 방법을 제안한다.
In this paper, we investigate a real-time environment recognition system based on stereo vision for moving object. This system consists of stereo matching, obstacle detection and distance estimation. In stereo matching part, depth maps can be obtained real road images captured adjustable baseline stereo vision system using belief propagation(BP) algorithm. In detection part, various obstacles are detected using only depth map in case of both v-disparity and column detection method under the real road environment. Finally in estimation part, asymmetric parabola fitting with NCC method improves estimation of obstacle detection. This stereo vision system can be applied to many applications such as unmanned vehicle and robot.
Human visual system infers 3D vision through stereo disparity in the stereoscopic images, and stereo visioning are recently being used in consumer electronics which has resulted in much research in the application field. Basically, stereo vision system consists of four processes, which are cost computation, cost aggregation, disparity calculation, and disparity refinement. In this paper, we present and evaluate the existing various methods, focusing on cost aggregation for stereo vision system to comparatively analyze the performance of their algorithms for a given set of resources. Experiments show that Normalized Cross Correlation and Zero-Mean Normalized Cross Correlation provide higher accuracy, however they are computationally heavy for embedded system in the real time systems. Sum of Absolute Difference and Sum of Squared Difference are more suitable selection for embedded system, but they should be required on improvement to apply to the real world system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.