• 제목/요약/키워드: elementary mathematics education

검색결과 1,743건 처리시간 0.022초

사칙연산의 1차적 개념을 학습한 학습자의 Schema가 거듭제곱과 혼합계산의 관계적 이해에 미치는 영향에 대한 사례연구 (A Case Study on the Influence of the Schema of Learners Who Have Learned the Primary Concepts of the Four Arithmetic Operations on the relational Understanding of Power and Mixed Calculations)

  • 김화수
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제16권3호
    • /
    • pp.251-266
    • /
    • 2013
  • 본 연구에서는 사칙연산의 1차적 개념을 학습한 초등학생들을 대상으로 거듭제곱과 혼합계산을 내용으로 하였을 때, 정확한 개념의 인지와 개념의 연결로 스키마와 변형된 스키마를 어떻게 구성을 하는지 알아보았다. 즉 사칙연산의 1차적 개념으로 어떠한 스키마와 변형된 스키마를 형성하여 2차적 개념에 대한 관계적 이해를 하는지, 그리고 연구대상자들이 스스로 형성한 스키마와 변형된 스키마를 어떻게 이용하여 문제 해결에 접근을 하는지, 또한 연구대상자들의 개념구성과 문제해결력에서의 스키마는 어떻게 변형을 이루어 나가는지를 심도 있게 조사하였다. 그 결과 1차적 개념에서 2차적 개념으로 발전 할 때, 정확한 1차적 개념에 대한 인지와 스키마 그리고 변형된 스키마가 중요한 요인으로 작용 한다는 것을 알 수 있었고 이때, 1차적 개념끼리의 연결과 정확한 1차적 개념에 대한 인지로 인해서 만들어지는 스키마와 변형된 스키마의 형성이 2차적 개념으로의 발전과 수학적 문제 해결에 무엇보다도 중요한 역할을 한다는 것을 알 수 있었다.

이중 수사(數詞) 사용에서 나타나는 한국어학습자의 오류 유형 분석 (Analysis of the error types made by Korean language learners in the use of dual numerals)

  • 도주원
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제38권2호
    • /
    • pp.145-165
    • /
    • 2024
  • 본 연구의 목적은 이중 수사 사용에서 나타나는 한국어학습자의 오류 유형을 분석하여 효과적인 명수법 지도 방안 마련을 위한 기초 자료를 제공하는 것이다. 이를 위해 언어적·문화적 배경이 다양하고 국어, 수학 학업성취도가 다른 다문화 배경의 한국어학습자를 대상으로 이중 수사를 사용하는 명수법에서 나타나는 오류 유형을 분석하는 사례연구를 하였다. 한국어학습자에게 나타난 오류를 범주화한 오류 유형을 분석틀로 활용하였다. 연구 결과로부터 얻은 결론은 다음과 같다. 첫째, 학생들이 오류가 많이 나타난 고유어 수사 사용과 관련된 명수법에 익숙해질 수 있도록 자주 사용할 기회를 제공할 필요가 있다. 둘째, 국어 학업성취도 하 수준의 한국어학습자에게 한자어 수사를 사용한 명수법 지도 시 한자어 수사의 승법적 기수법의 체계에 유의하여 지도할 필요가 있다. 셋째, 외래어 분류사를 한국어로 정확하게 읽고 분류사 '시'와 '시간'을 구분하여 읽도록 지도할 필요가 있으며, 고유어/한자어 수사를 한자어 분류사와 함께 연이어 적절하게 사용할 수 있도록 지도할 필요가 있다. 본 연구의 결과는 언어적, 문화적 배경이 다양한 한국어학습자의 이중 수사를 사용하는 명수법의 효과적인 지도 방안 마련에 기여할 수 있을 것이다.

초.중.고등학교 확률과 통계 단원에 나타난 표본개념에 대한 분석 (Features of sample concepts in the probability and statistics chapters of Korean mathematics textbooks of grades 1-12)

  • 이영하;신수영
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제21권4호
    • /
    • pp.327-344
    • /
    • 2011
  • 본 연구는 고등학교 수학교과에서 배우는 모평균의 신뢰구간 구하기와 같은 통계적 추론 능력을 기르기 위한 방안의 첫 단계연구이다. 통계적 추론과정을 비판적으로 분석하여 신뢰할만한 추론방법으로 이를 인정할 수 있는 표본개념의 형성을 위해, 연구자들은 우연과 필연, 귀납과 연역, 가능성원리, 통계량의 변이성, 통계적 모형 등의 하위 개념들이 형성되어야 한다고 보았다. 그리고 초중등 통계단원의 전 과정에서 이들 개념의 체계적인 발달을 도모해야 한다는 전제 아래, 초 중 고등학교 통계단원을 분석해 본 결과는 아래와 같았다. 첫째, 문제해결 방법 선택의 지도와 관련하여, 통계적 방법을 선택할 문제 상황으로서, 우연적 상황을 필연적 상황과 구분하기위한 설명이 있는 교과서가 초등학교에는 없고, 중등 수준에서도 매우 드물었다. 둘째 표본의 모집단 관련 의미를 이해시키려는 단계적 준비가 미흡하다고 할 수 있다. 전체와 부분의 모집단과 표본 구분이 고등학교에서 비로소 공식화되고 있으며, 초 중학교에서 사용되는 표본자료는 그것으로부터 얻어지는 계산적 결과에만 초점이 맞추어짐으로서, 학년이 올라감에 따라 모집단을 향한 귀납적 추론의 신뢰성에 대한 비판적 사고의 깊이가 더해지는 모습을 찾아보기 어려웠다. 셋째, 무작위 추출이 갖는 대표성의 의미에 대한 설명보다는 무작위 활동 자체에 대한 설명이 중심이 됨으로서 무작위 추출의 확률적 의미, 즉 무작위 표본을 통해 구해질 통계량의 표집분포에서의 (상속된) 무작위성을 위한 담보로서의 목적에 대한 설명이 없다는 점이다. 넷째 통계적 추론을 수학(연역)적 추론과 구분해 주는 설명이 없을 뿐 아니라, 학습자의 논리성 발달 수준에 맞게 변화하는 가능성원리에 대한 설명, 적용 등을 전혀 찾기 어렵다는 점이다. 다섯째 통계량의 우연변이성과 그에 따른 표집분포의 존재에 대한 이해를 추구하는 설명을 찾기 어렵다는 점이다. 표집분포를 수학적으로 구하는 것은 매우 어려운 과정이지만, 그것의 존재를 인식하느냐 못하느냐는 통계적 추론 자체의 이해 가능성을 달리하는 중요한 문제이기 때문이다.

  • PDF