• 제목/요약/키워드: elemental mass fraction

검색결과 20건 처리시간 0.017초

HIGH DISPERSION OPTICAL SPECTROSCOPY OF PLANETARY NEBULAE

  • HYUNG SIEK
    • 천문학회지
    • /
    • 제37권4호
    • /
    • pp.273-279
    • /
    • 2004
  • Chemical compositions of planetary nebulae are of interest for a study of the late stage of stellar evolution and for elemental contributions to the interstellar medium of reprocessed elements since possibly a large fraction of stars in 0.8 - 8 $M_{\bigodot}$ range go through this stage. One of the methods for getting chemical composition is a construction of theoretical photoionization models, which involves geometrical complexities and a variety of physical processes. With modelling effort, one can analyze the high dispersion and find the elemental abundances for a number of planetary nebulae. The model also gives the physical parameter of planetary nebula and its central star physical parameter along with the knowledge of its evolutionary status. Two planetary nebulae, NGC 7026 and Hu 1-2, which could have evolved from about one solar mass progenitor stars, showed radically different chemical abundances: the former has high chemical abundances in most elements, while the latter has extremely low abundances. We discuss their significance in the light of the evolution of our Galaxy.

황사의 오염원분류포 개발을 위한 개별입자분석 (Individual Particle Analysis for Developing a Source Profile of Yellow Sands)

  • 강승우;김동술
    • 한국대기환경학회지
    • /
    • 제16권6호
    • /
    • pp.565-572
    • /
    • 2000
  • To quantitatively estimate mass contribution of long-range transported yellow sand, their sources should be separated independently from various local soil sources having similar elemental compositions. While it is difficult to estimate total mass loadings of pure yellow sand by traditional bulk analysis, it can be clearly solved by an particle-by-particle analysis. To perform this study, two yellow sand samples and three local soil samples were collected by a mini-volume sampler. These samples were three analyzed using a scanning electron microscope(SEM) equipped with an energy dispersive x-ray analyser (EDX) was used to obtain basic chemical information of individual yellow san particles. A total of 19 elements in a single particle were measured to develop a source profile with newly created homogeneous particle classes (HPCs) as chemical variables. The present study showed that the yellow sand samples as well as three local soil samples were characterized with reasonably well created HPCs. Finally the mass fraction of each HPC in each sample was calculated and then compared each other.

  • PDF

자연토양에서의 소수성 유기오염물질의 느린 흡착 (Slow Sorption of Hydrophobic Organic Contaminants in Natural Soils)

  • 신원식;박대효;안태봉;천희동
    • 한국지반환경공학회 논문집
    • /
    • 제2권1호
    • /
    • pp.103-114
    • /
    • 2001
  • 본 연구에서는 근래에 퇴적된 습지토양의 유기물질에 느린 흡착부분이 존재하는지 살펴보기 위해 흡착실험을 행하였다. 최근 퇴적된 민물 습지토양에서의 소수성 유기화합물 (chlorobenzene and phenanthrene)의 흡착 특성을 회분식 흡착법을 사용하여 결정하였다. 유기물질의 나이의 상대 척도로서 산소/탄소 원소비 등을 포함한 여러 방법으로서 평가하였다. 토양의 나이가 유기화합물의 습지토양에서의 흡착에 차이를 유발하는지에 대해 조사하기 위하여 습지 토양의 표층부(상층부 0-2cm, 5년 미만)과 하층부(below 10cm, 20년 이상)에 대한 느린 흡착 특성을 상대적으로 오래된 PPI(Petro Processors, Inc. Superfund site), BM(Bayou Manchac) 토양과 비교하였다. 느린 흡착모델 변수의 비선형성(KF와 N)의 증가로서 느린 흡착부분이 존재함을 알 수 있었다. 느린 흡착모델의 분석결과 상당한 크기의 느린 흡착부분이 존재하였으며 습지 토양의 경우 흡착된 chlorobenzene의 25.4-263%가 phenanthrene의 경우 흡착된 양의 1.4-1.9%(phenanthrene)가 각각 느린 흡착 부분에 해당하였으며, PPI 토양과 BM토양의 경우 흡착된 chlorobenzene의 40.0-55.93%와 흡착된 phenanthrene의 2.9-3.19%가 각각 느린 흡착 부분에 해당하였다. 느린 흡착 부분은 상층부 < 하층부 < PPI < BM 토양의 순으로 증가하였는데 이것은 토양 유기물질의 나이가 증가할수록 느린 흡착부분의 크기가 증가함을 나타낸다.

  • PDF

1994년 6월 서울지역 시정장애의 측정 및 분석 (Measurement and Analysis of Visibility lmpairment during June, 1994 in Seoul)

  • 백남준;이종훈;김용표;문길주
    • 한국대기환경학회지
    • /
    • 제12권4호
    • /
    • pp.407-419
    • /
    • 1996
  • Characteristics of visual air quality in Seoul have been investigated between June 13 and 21, 1994. Optical properties (extinction coefficient and particle scattering coefficient), meteorological parameters (relative humidity, temperature, wind speed, wind direction, and cloud cover), particle characteristics (mass size distribution, components) were measured and analyzed. During measurement periods, northwest wind with less than 2m/sec of wind speed deteriorates visibility. Effects of relative humidity are though to be not a direct factor which influence to visibility through the size change due to hygroscopic species in aerosol. During the smoggy period both the aerosol mass concentration and fine particle fraction of the size distribution are increased compared to the clear period. Sulfate, organic carbon, and elemental carbon in aerosol are the major species in determining the occurrence and severity of a smog in Seoul.

  • PDF

서울과 고산의 에어로졸 화학성분과 광학특성의 계절변화 (Seasonal Variations of Chemical Composition and Optical Properties of Aerosols at Seoul and Gosan)

  • 이시혜;김영성;김상우;윤순창
    • 한국대기환경학회지
    • /
    • 제24권4호
    • /
    • pp.470-482
    • /
    • 2008
  • Seasonal variations of chemical composition and optical properties of aerosols at Seoul and Gosan were investigated using the ground-based aerosol measurements and an optical model calculation. The mass fraction of elemental carbon was $8{\sim}17%$, but its contribution on light absorption was high up to $29{\sim}48%$ in Seoul. In Gosan, the contribution of water soluble aerosols on aerosol extinction was $83{\sim}94%$ due to the high mass fraction of these particles in the range of $56{\sim}88%$. Model calculation showed that the water holding capacity of aerosols was larger in Gosan than in Seoul because of higher relative humidity and temperature along with abundant water soluble aerosols. Difference between measured and calculated aerosol optical depths was the highest in summer. This was because aerosol optical depth calculated from ground-based measurements could not consider aerosol loadings at high altitude in spite of high column-integrated aerosol loadings observed by Sun photometer. Although hygroscopic growth was expected to be dominant in summer, the mass concentration of water soluble aerosols was too low to permit this growth.

익산지역 가을철 대기 중 호흡성 및 흡입성 먼지입자의 화학조성 (Chemical Composition of Respirable PM2.5 and Inhalable PM10 in Iksan City during Fall, 2004)

  • 강공언
    • 한국환경보건학회지
    • /
    • 제36권1호
    • /
    • pp.61-71
    • /
    • 2010
  • Intensive measurements of airborne respirable $PM_{2.5}$ and inhalable $PM_{2.5}$ were conducted in the downtown area of Iksan city. The $PM_{2.5}$ and $PM_{2.5}$ samples were collected twice a day in the Iksan city of Korea from October 17 to November 1, 2004. The purpose of the study was to determine the inorganic water-soluble components and trace elements of $PM_{2.5}$ and $PM_{2.5}$ in the atmospheric environment and estimate the contribution rate of major chemical components from a mass balance of all measured particulate species. The chemical analysis for PM samples was conducted for water-soluble inorganic ions using ion chromatography and trace elements using PIXE analysis. The mean concentrations of respirable $PM_{2.5}$ and inhalable $PM_{2.5}$ were $51.4{\pm}29.7$ and $79.5{\pm}39.6\;{\mu}g/m^3$, respectively, and the ratio was 0.62. The ion species of $NO_3$, $SO_4^2$, and $NH_4^+$ were abundant in both $PM_{2.5}$ and $PM_{2.5}$. These components predominated in respirable $PM_{2.5}$ fraction, while $Na^+$, $Mg^{2+}$, $Ca^{2+}$ mostly existed in coarse particle mode. Elemental components of S, Cl, K, and Si were abundant in both $PM_{2.5}$ and $PM_{2.5}$. These elements, except for Si, were considered to be emitted from anthropogenic sources, while Si, Al, Fe, Ca existed mainly in coarse particle mode and were considered to be emitted from crustal materials. The averaged mass balance analysis showed that ammonium nitrate, ammonium sulfate, crustal component, and other trace elements were composed of 18.4%, 13.2%, 4.8%, 3.5% for PM2.5 and 17.0%, 11.6%, 13.7%, 4.4% for $PM_{2.5}$, respectively.

Chemical Compositions of Primary PM2.5 Derived from Biomass Burning Emissions

  • Ichikawa, Yujiro;Naito, Suekazu
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권2호
    • /
    • pp.79-95
    • /
    • 2017
  • A number of field studies have provided evidence that biomass burning is one of the major global sources of atmospheric particles. In this study, we have collected $PM_{2.5}$ emitted from biomass burning combusted at open burning and laboratory chamber situations. The open burning experiment was conducted with the cooperation of 9 farmers in Chiba Prefecture, Japan, while the chamber experiment was designed to evaluate the characteristics of chemical components among 14 different plant species. The analyzed categories were $PM_{2.5}$ mass concentration, organic carbon (OC), elemental carbon (EC), ionic components ($Na^+$, ${NH_4}^+$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Cl^-$, ${NO_3}^-$ and ${SO_4}^{2-}$), water-soluble organic carbon (WSOC), water-insoluble inorganic carbon (WIOC), char-EC and soot-EC. OC was the dominant chemical component, accounting for the major fraction of primary $PM_{2.5}$ derived from biomass burning, followed by EC. Ionic components contributed a small portion of $PM_{2.5}$, as well as that of $K^+$. In some cases, $K^+$ is used as biomass burning tracer; however, the observations obtained in this study suggest that $K^+$ may not always be suitable as a tracer for biomass burning emissions. Also, the results of all the samples tested indicate relatively low values of char-EC compared to soot-EC. From our results, careful consideration should be given to the usage of $K^+$ and char-EC as indicators of biomass burning. The calculated ratios of WSOC/OC and WIOC/OC were 55.7% and 44.3% on average for all samples, which showed no large difference between them. The organic materials to OC ratio, which is often used for chemical mass closure model, was roughly estimated by two independent methods, resulting in a factor of 1.7 for biomass burning emissions.

한국산 오수유성분에 관한 연구 (Studies on the Components of Evodia daniellii $H_{EMSLEY}$ in Korea)

  • 정보섭
    • 생약학회지
    • /
    • 제1권4호
    • /
    • pp.119-124
    • /
    • 1970
  • Evodia daniellii $H_{EMSLEY}$, a plant belonging to Rutaceae, is cultivated in Korea and used as a folkmedicine for gastric inflammation, extermination of noxious insects, and headache. The seed oil of this plant also has been used in various diseases, for example, dermatitis, scabies and so forth. From the barks, fruit peels, and seed oil of Evodia daniellii $H_{EMSLEY}$, four crystalline compounds were isolated. Three compounds except one were characterized as methyl sinapate, bergapten, and evodiamine by m.p. determination, elemental analysis, UV, IR, NMR spectra and mass analysis. Even though methyl sinapate was a known synthetic compound, it was not yet reported as a natural product. From the seed oil, unsaponifiable fraction was separated and was analyzed. It was considered to be consisted with sterols, hydrocarbons and tocopherols.

  • PDF

Characterization of Wintertime Atmospheric Aerosols in Seoul Using PIXE and Supplementary Analyzers

  • Ma, Chang-Jin;Mikio Kasahara;Hwang, Kyung-Chul;Yeo, Hyun-Gu;Park, Kum-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제16권E호
    • /
    • pp.19-27
    • /
    • 2000
  • Particle Induced X-ray Emission (PIXE) and Elemental Analysis Syztem (EAS) were applied to the investiga-tion of the Characteristics and sources of wintertime atmospheric aerosols in Seoul. Atmospheric aerosols were collected by both fine and coarse fractions using a two-stage filter pack sampler from Kon-Kuk university during the winter season of 1999. PIXE was applied to the analysis of the middle and heavy elements with atomic numbers greater than 14(Si) and EAS was applied to the measurement of the light elements such as H, C and N. The fact that 64.2% of mass of fine particles in Seoul consists of the light elements (N, C , and H) suggests that the measurement of light elements is extremely important. The average mass concentration is Seoul was 38.6$\mu\textrm{g}$m(sup)-3. Elements such as Ca, Fe, Mg, and Ti appeared to have very low Fine/Coarse ratios(0.1∼0.4), whereas che-mical components related to anthropogenic sources such as Br, V, Pb, and Zn were observed to accumulate in the fine fraction. In the Asian Dust Storm(ADS) event, the concentation of soil components increased dramatically. Reconstruction of the fine mass concentrations estimated by a newly revised simple model was fairly in good agreement with the measured ones. Source identification was attempted using the enrichment factor and Pearsons coefficient of correlation. The typical elements derived from each source could be classified by this method.

  • PDF

디젤 및 가솔린자동차 배출원의 구성물질 성분비 개발에 관한 연구 (A Study on the Source Profile Development for Diesel and Gasoline-Powered Vehicles)

  • 강병욱;조민식;이승복;배귀남;임철수;나광삼;이학성
    • 한국대기환경학회지
    • /
    • 제26권3호
    • /
    • pp.318-329
    • /
    • 2010
  • The purpose of this study was to develop the $PM_{2.5}$ source profiles for diesel and gasoline-powered vehicles, which contained mass abundances in terms of mass fraction of $PM_{2.5}$ of chemical species. Seven diesel-powered vehicles and nine gasoline-powered vehicles were sampled from a chassis dynamometer exhaust dilution system. The species measured were water-soluble ions, elements, elemental carbon (EC), and organic carbon (OC). From this study, the large abundances of EC (54.5%), OC (26.0%), ${SO_4}^{2-}$ (1.5%), ${NO_3}^-$ (0.8%), and S (0.6%) were observed from the diesel-powered vehicle exhaust showing that carbons were dominant species. The gasoline-powered vehicle exhaust emitted large abundances of OC (38.3%), EC (4.2%), ${SO_4}^{2-}$ (3.6%), ${NH_4}^+$ (3.5%), and ${NO_3}^-$ (3.0%). The abundances of ${SO_4}^{2-}$, ${NH_4}^+$, and ${NO_3}^-$ from gasoline vehicle were greater than those of diesel vehicle. The emissions of P, S, Ca, Fe, and Zn among trace elements for the gasoline vehicle were greater than 1% of the $PM_{2.5}$ mass unlike those for the diesel vehicle. Particularly, the fraction of Zn was five times higher from the gasoline vehicle than that from the diesel vehicle. The source profiles developed in this work were intensively examined by applying chemical mass balance model.