DOI QR코드

DOI QR Code

HIGH DISPERSION OPTICAL SPECTROSCOPY OF PLANETARY NEBULAE

  • HYUNG SIEK (School of Science Education (Astronomy), Chungbuk National University)
  • Published : 2004.12.01

Abstract

Chemical compositions of planetary nebulae are of interest for a study of the late stage of stellar evolution and for elemental contributions to the interstellar medium of reprocessed elements since possibly a large fraction of stars in 0.8 - 8 $M_{\bigodot}$ range go through this stage. One of the methods for getting chemical composition is a construction of theoretical photoionization models, which involves geometrical complexities and a variety of physical processes. With modelling effort, one can analyze the high dispersion and find the elemental abundances for a number of planetary nebulae. The model also gives the physical parameter of planetary nebula and its central star physical parameter along with the knowledge of its evolutionary status. Two planetary nebulae, NGC 7026 and Hu 1-2, which could have evolved from about one solar mass progenitor stars, showed radically different chemical abundances: the former has high chemical abundances in most elements, while the latter has extremely low abundances. We discuss their significance in the light of the evolution of our Galaxy.

Keywords

References

  1. Aller, L. H. 1984, Physics of Thermal Gaseous Nebulae, (Dordrecht: Reidel Publishing Company)
  2. Aller, L. H., & Liller W. 1968, in Middlehurst B.M. and Aller, L.H., eds, Nebulae and Interstellar Matter, University of Chicago Press, Chicago, ch. 9, ,p498
  3. Asplund, M. 2003, in CNO in the Universe, eds. C. Charbonnel, D. Schaerer, & G. Meynet, ASP Conference Series, 304, 275
  4. Asplund, M., Grevesse, N., Sauval, A. J., Allende Prieto, C., & Kiselman, D. 2004, A&A, 417, 751 https://doi.org/10.1051/0004-6361:20034328
  5. Christensen-Dalsgaard, J. 1998, Space Sci., 85, 19 https://doi.org/10.1023/A:1005116132024
  6. 'Forestini, M., & Charbonnel, C. 1997, A&AS, 123, 241 https://doi.org/10.1051/aas:1997348
  7. Hajian, A.R., & Terzian, Y. 1996, PASP, 108, 258 https://doi.org/10.1086/133719
  8. Hubeny, I. 1988, Computer Phys.Comm., 52, 103 https://doi.org/10.1016/0010-4655(88)90177-4
  9. Hyung, S. 1994, ApJS, 90, 119 https://doi.org/10.1086/191860
  10. Hyung, S., & Aller, L. H., 1996, MNRAS, 278, 551 https://doi.org/10.1093/mnras/278.2.551
  11. Hyung, S., Aller, L. H., Feibelman, W. A., & Lee, S.-J. 2001, ApJ, 563, 889 https://doi.org/10.1086/323962
  12. Hyung, S., & Feibelman, W. A. 2004, ApJ, 614, 745 https://doi.org/10.1086/423660
  13. Hyung, S., S. R. Pottasch, & Feibelman, 2004, A&A 425, 143 https://doi.org/10.1051/0004-6361:20041005
  14. Keenan, F. P., Aller, L. H., Exter, K. M., Hyung, S., & Pollacco, D. L. 2003, ApJ, 584, 385 https://doi.org/10.1086/345542
  15. Keenan, F. P., Aller, L. H., Bell, K. L., Hyung, S., McKenna, F. C. Ramsbottom, C. A. 1996, MNRAS, 281, 1073 https://doi.org/10.1093/mnras/281.3.1073
  16. Keenan, F. P., Aller, L. H., Ramsbottom, C. A., Bell, K. L., Crawford, F. L., & Hyung, S. 2000, Proc. Natl. Acad Sci. USA, 97, 4551 https://doi.org/10.1073/pnas.070590597
  17. Peimbert, M., Luridiana, V., & Torres-Peimbert, S. 1995, RMxA&A, 31,147
  18. Robberto, M., Stanghellini, M., Ligori, S., Herbst, T. M., & Thompson, D. 1997, in lAU Symposium 180, Planetary Nebulae, ed. D.R. Flower (Dordrecht: Reidel), p. 275
  19. Schonberner, B. 1989, in lAU Symp. 131, Planetary Nebula. ASP Conference series, Ed. S. Torres-Peimbert (Dordrecht) p. 463
  20. Seaton, M. J. 1979, MNRAS, 187, 73p https://doi.org/10.1093/mnras/187.1.73P
  21. Solf, J., & Weinberger, R. 1984, A&A, 130, 269