• Title/Summary/Keyword: element load method

Search Result 2,585, Processing Time 0.028 seconds

Earthquake Response Analysis of Bridges Using Fiber Element Method (섬유요소를 이용한 교량의 비선형 지진응답해석)

  • Byun, Soon-Joo;Im, Jung-Soon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.29-35
    • /
    • 2006
  • Fiber element method in earthquake response analysis of bridges is used to represents a realistic flexural deformation according to nonlinear behavior of beam-column section. Nonlinear pseudo-static analysis of two column bent using fiber element is accomplished and failure mechanism of the plastic hinge region is studied. Load-displacement curve obtained by nonlinear pseudo-static analysis can be applicable to earthquake response analysis by capacity spectrum method. The nonlinear time history analysis of a full bridge model using fiber element experienced by the ground motion corresponding to the target response spectrum is accomplished. The result of time history analysis is similar to that of capacity spectrum method.

Linear and Nonlinear Stability Analysis of Shells Using Degenerated Isoparametric Elements (등매개(等媒介) 변수요소(變數要素)를 이용한 쉘의 선형(線形) 및 비선형(非線形) 안정해석(安定解析))

  • Lee, Nam Ho;Choi, Chang Koan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.21-28
    • /
    • 1987
  • The paper describes the analysis of large displacement problems including instability phenomena. The element used in this is a degenerated isoparametric shell element with eight nodes. Total Lagrangian formulation has been adopted in this study using Newton-Raphson iteration method with incremental load. The linear stability analyses performed usually for the initial position can be repeated at several advanced fundamental states on the non-linear buckling path. Thus a current estimate of the failure load is given. The numerical examples of a cylindrical panel under uniform load, simply supported plate under axial load, and clamped plate under uniform load are carried out. The examples applying degenerated isoparametric elements to bifurcation buckling and nonlinear collapse problems are also performed.

  • PDF

Study on failure mechanism of multi-storeyed reinforced concrete framed structures

  • Ahmed, Irfan;Sheikh, Tariq Ahmad;Gajalakshmi, P.;Revathy, J.
    • Advances in Computational Design
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • Failure of a Multi-storeyed reinforced concrete framed structure occurs when a primary vertical structural component is isolated or made fragile, due to artificial or natural hazards. Load carried by vertical component (column) is transferred to neighbouring columns in the structure, if the neighbouring column is incompetent of holding the extra load, this leads to the progressive failure of neighbouring members and finally to the failure of partial or whole structure. The collapsing system frequently seeks alternative load path in order to stay alive. One of the imperative features of collapse is that the final damage is not relative to the initial damage. In this paper, the effect on the column and beam adjacent to statically removed vertical element in terms of axial force, shear force and bending moment is investigated. Using Alternate load path method, numerical modelling of two dimensional one bay, two bay with variation in storey heights are analysed with FE model in order to obtain better understanding of failure mechanism of multi-storeyed reinforced concrete framed structure. The results indicate that the corner column is more susceptible to progressive collapse when compared to middle column, using this simplified methodology one can easily predict how the structure can be made to stay alive in case of sudden failure of any horizontal or vertical structural element before designing.

Evaluation of cyclic behavior of lateral load resisting system with eccentric brace and steel plate

  • Reza Khalili Sarbangoli;Ahmad Maleki;Ramin K. Badri
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.239-252
    • /
    • 2024
  • Steel plate shear walls (SPSWs) are classified as lateral load-resisting systems. The feasibility of openings in the steel plate is a characteristic of SPSWs. The use of openings in SPSWs can lower the load capacity, stiffness, and energy dissipation. This study proposes a novel form of SPSWs that provides convenient access through openings by combining steel plates and eccentrically braced frames (EBFs). The proposed system also avoids a substantial reduction in the strength and stiffness. Hence, various geometric forms were analyzed through two different structural approaches. Groups 1, 2, and 3 included a steel EBF with a steel plate between the column and EBF in order to improve system performance. In Group 4, the proposed system was evaluated within an SPSW with openings and an EBF on the opening edge. To evaluate the performance of the proposed systems, the nonlinear finite element method (NL-FEM) was employed under cyclic loading. The hysteresis (load-drift) curve, stress contour, stiffness, and damping were evaluated as the structural outputs. The numerical models indicated that local buckling within the middle plate-EBF connection prevented a diagonal tension field. Moreover, in group 4, the EBF and stiffeners on the opening edge enhanced the structural response by approximately 7.5% in comparison with the base SPSW system.

Short - and Long-term Load Carrying Capacity of Geogrid Reinforced Stone Column - A numerical investigation (지오그리드 보강 Stone Column의 장.단기 하중 지지 특성 - 유한요소해석을 통한 고찰)

  • Lee, Dae-Young;Kim, Sun-Bin;Song, Ah-Ran;Yoo, Chung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.434-444
    • /
    • 2006
  • The stone column method is widely used in Europe as an alternative to conventional pile foundations. Several benefits of using the stone column method include sound performance, low cost, expediency of construction, and liquiefaction resistance, among others. Recently, geosynthetic-encased stone column approach has been developed to improve its' load carrying capacity through increasing confinement effect. Although such a concept has successfully applied in practice, fundamentals of the method have not been fully explored. This Paper Presents the results of an investigation on the loading carriying capacity of geogrid-encased stone column using a series of 2D finite element analyses. The results of the analyses indicated improved short- and long-term carrying capacity of the geogrid-encased stone column method over the conventional strone column method with no encasing.

  • PDF

Analysis and Optimization of the Axial Flux Permanent Magnet Synchronous Generator using an Analytical Method

  • Ikram, Junaid;Khan, Nasrullah;Junaid, Qudsia;Khaliq, Salman;Kwon, Byung-il
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.257-265
    • /
    • 2017
  • This paper presents a 2-D analytical method to calculate the back EMF of the axial flux permanent magnet synchronous generator (AFPMSG) with coreless stator and dual rotor having magnets mounted on both sides of rotor yoke. Furthermore, in order to reduce the no load voltage total harmonics distortion (VTHD), the initial model of the coreless AFPMSG is optimized by using a developed analytical method. Optimization using the 2-D analytical method reduces the optimization time to less than a minute. The back EMF obtained by using the 2-D analytical method is verified by a time stepped 3-D finite element analysis (FEA) for both the initial and optimized model. Finally, the VTHD, output torque and torque ripples of both the initial and optimized models are compared with 3D-FEA. The result shows that the optimized model reduces the VTHD and torque ripples as compared to the initial model. Furthermore, the result also shows that output torque increases as the result of the optimization.

Simplistic Beam Theory-based Structural Safety Evaluation Method for Block Structure on the A-Carrier (블록 구조물 적치용 지지대의 빔 이론 기반 구조 안전성 평가법)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.4
    • /
    • pp.358-364
    • /
    • 2024
  • Type A carrier structures that support blocks or equipment gradually deform over time with load changes, reducing the area in contact with the block and changing the load pattern from distributed to concentrated during construction work in the shipyard. This phenomenon has the potential to misrepresent actual service loads. In particular, A carriers are often used by small manufacturers, who often do not have specialized engineering capabilities, necessitating the development of a method for easy calculation of carrier safe working load. This study proposes a quick evaluation method for the long-term safe working load of Type A carriers, to predict the plastic deformation and safety issues resulting from changes in load distribution. Based on the results of finite element analysis (beam and shell modeling) of the centralized load, beam-theory was modified to propose a method for determining the distributed load conditions of the A-carrier. In beam modeling, the theoretical value was multiplied by a correction factor of 0.73 for concentrated loads and 0.69 for distributed loads to obtain a safe working load. For shell modeling, a correction factor of 0.75 can be used for concentrated loads and 0.69 for distributed loads. This study can serve as a basis for improving the safety of shipbuilding, enabling quick and effective decisions for determining safe working loads in actual working environments.

Finite Element Analysis for the Forging Process Design of a Blind Rivet (블라인드 리벳의 단조공정설계를 위한 유한요소해석)

  • Byun, Hong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2577-2582
    • /
    • 2009
  • A rivet which can fasten two parts is one of an important mechanical elements. In this study, the process design of a blind revet is implemented using finite element method in order to manufacture it which can resist high vibration and has strong coherence between two parts. Considering plastic flow, ease of manufacture, high strength, material loss, and so forth, an optimal four-stage process is proposed by finite element analysis and process design rules. In addition, the finite element simulation results such as shape of the forged rivet, strain distribution and forging load are investigated for the usefulness of the forging process of the blind rivet. These results will be contributed to the forging process design and the die design of the blind rivet.

Study on the stress distribution around two types of implants with an internal connection by finite element analysis (임프란트와 지대주 간 내측 연결을 갖는 2종의 임프란트에서 저작압이 임프란트 주위골 내응력 분포에 미치는 영향에 관한 연구)

  • Yoo, Mi-Kyung;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.473-488
    • /
    • 2006
  • Adequate bone quality and stress distribution to the bone are of decisive importance for implant success. Even though the success rates of dental implants have been high, implant failures do occur. Overloading has been identified as a primary factor behind dental implant failure. The purpose of this study was to theoretically investigate the effect of two types of implants on the stress distribution in poor bone quality. Employing the finite element method, the study modeled a 4.1 mm diameter, 12.0 mm length implant placed in cortical or spongeous bone. A static loading of lOON was applied at the occlusal surface at 0, 30 degrees angle to the vertical axis of the implant. von Mises stresses concentrations in the supporting bone were analyzed with finite element analysis program. The results were as follows; 1. The stresses at the marginal bone were higher under buccal oblique load(30 degrees off of the long axis) than under vertical load. 2. Under buccal oblique load, the stresses were higher at the lingual marginal bone than at the buccal marginal bone, and the differences were almost the same. 3, Under vertical and oblique load, the stress was the highest at the marginal bone and lowest at the bone around apical portions of implant in cortical bone. 4, Under vertical load, Model 1 showed more effective stress distribution than Model 2 irrespective of bone types. On the other hand, Model 2 showed lower stress concentration than Model 1 under buccal oblique load.