• Title/Summary/Keyword: element load method

Search Result 2,585, Processing Time 0.029 seconds

Improved Model of the Iron Loss for the Permanent Magnet Synchronous Motors

  • Junaid, Ikram;Nasrullah, Khan;Kwon, Byung-Il
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.10-17
    • /
    • 2012
  • This paper presents an improved iron loss model, for the computation of the no load iron loss in the stator core of the in-wheel permanent magnet synchronous motors (PMSM), for the cases of with and without stator skew. 2-D analytical model is used for the computation of tooth and yoke flux densities of the in-wheel PMSM. The no load iron loss computed by the improved iron loss model, for the cases of with and without skew is compared with the finite element method (FEM) and the results show good consistency.

Structural and Vibration Analyses of 3MW Class Wind-Turbine Blade Using CAE Technique (CAE 기법을 활용한 3MW급 풍력발전기 로터의 구조 및 진동해석)

  • Kim, Yo-Han;Park, Hyo-Geun;Kim, Dong-Hyun;Kim, Dong-Man;Hwang, Byoung-Sun;Park, Ji-Sang;Jung, Sung-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.22-31
    • /
    • 2008
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a huge composite rotor blade. Computational fluid dynamics is used to predict aerodynamic load of the rotating wind-turbine blade model. Static and dynamic structural analyses are conducted based on finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results for aerodynamic load, static stress, buckling and dynamic analyses are presented and characteristics of structural behaviors are investigated herein.

Effects of Surface Loading on the Behavior of Soil-Reinforced Segmental Retaining Walls (상재하중이 블록식 보강토 옹벽의 거동에 미치는 영향)

  • 유충식;김주석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.109-116
    • /
    • 2000
  • This paper presents the results of investigation on the effects of surface loading on the performance of soil-reinforced segmental retaining walls using the finite element method of analysis. A parametric study was performed by varying location of surface loading. The results of the analyses indicate that the increment of the reinforcement tensile load due to the presence of surface load may be significantly over-estimated when using the conventional approach. Furthermore, the external stability should be carefully examined when a surface loading is present just outside the reinforced soil zone. The implications of the findings from this study to current design approaches are discussed in detail.

  • PDF

A study on the behaviour of axisymmetric outer tube and inner movable part(case) under pressure and thermal load (열하중 및 내압을 받는 축대칭 튜브와 내부 운동체의 거동해석 연구)

  • Kim, I.W.;Lee, S.B.;Park, Y.J.;Lee, Y.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.114-125
    • /
    • 1993
  • Thermoelastoplastic analysis of a typical device consisting of fixed tube and movable case having an inital clearance in between, which is subjected to pressure and thermal load, has been carried out to examine the cause of malfunction mainly at high temperature condition, and to improve the design. Stresses, deformed shape, interface state and their effects on normal function of case are discussed by using finite element method. The extraction energy can be remarkably reduced by changing the configuration of tube from the present design (Parallel type) to the improved design (Tapered type). This effect has been proved by sustained cyclic function test.

  • PDF

Development of High Precision Actuator for Micro Press System by Inchworm Motor (인치웜모터를 이용한 마이크로 프레스용 고정밀 구동기의 개발)

  • Choi, Jong-Pil;Nam, Kwang-Sun;Lee, Hye-Jin;Lee, Nak-Gue;Kim, Byeong-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.137-143
    • /
    • 2009
  • This paper presents the fabrication of inchworm motor for high precision actuator system of large displacement and high force. The inchworm motor consists of a extend actuator that provides displacement of tool guide and two clamping actuators which provide the holding force. In order to avoid the PZT fracture, design of pre-load housing was conducted by flexure hinge structure, because PZT actuator has low tensile and shear. To design the pre-load housing and optimize the clamping mechanism, the static and dynamic analysis were conducted by finite element method. From these results, a prototype of the inchworm motor was fabricated and dynamic characteristic with respect to the various frequency was tested. The maximum velocity of the inchworm motor was $41.1{\mu}m/s$ at 16Hz.

A Berkovich Indentation Technique Based on 3D FEA solutions for Material Property Evaluation (3차원 유한요소해에 기초한 Berkovich 압입 물성평가법)

  • Kim, Min-Soo;Hyun, Hong-Chul;Lee, Kyoung-Yoon;Lee, Hyung-Yil
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1-6
    • /
    • 2008
  • Due to the self-similarity of Berkovich and conical indenters, different materials may show the same loaddepth curve for single indentation. In this study, we first compare the load-depth characteristics of conical and Berkovich indenters via finite element method. We also analyze the variation of load-depth curves with angle of Berkovich indenter, indentation parameters, and material properties. With numerical regressions of obtained data, we then propose dual-Berkovich indentation formulae for material property evaluation. The proposed approach provides the values of elastic modulus, yield strength and strain-hardening exponent and corresponding stress-strain curve with an average error of less than 3%. The method is valid for any elastic indenters made of tungsten carbide and diamond for instance.

  • PDF

V-Factor Estimation Under Thermal and Mechanical Stress for Circumferentially Cracked Cylinder (열하중 및 기계하중이 작용하는 원주 방향 균열 배관에 대한 V-계수 평가)

  • Song, Tae-Kwang;Oh, Chang-Kyun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1123-1131
    • /
    • 2008
  • This paper provides V-factor estimation under combined mechanical and thermal load for circumferential cracks. Results are based on finite element analyses and effect of types and magnitudes of the thermal stress, crack geometry, the loading mode and plastic strain hardening on variations of the V-factor are investigated. The results of finite element analyses are compared with R6 values. As a result, it is shown that R6 gives generally conservative results. The conservatism is especially increased for the combination of large mechanical and thermal load. As a result, new estimation method which uses failure assessment line in R6 is proposed for V-factor and gives less conservative results.

Structural Optimization of a Light-weight Manhole Cover Using FEM and Response Surface Method (유한요소법과 반응표면법을 이용한 경량 맨홀 커버 구조 최적화 설계)

  • Lee, Hyoungwook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.462-470
    • /
    • 2016
  • The locking load of a conventional manhole depends on the weight of its cover. Locking-type manhole structures with a special locking mechanism were recently developed to prevent accidents such as stolen cover, away cover from a frame. The weight of the manhole structure can be reduced under structural safety because the locking force of a locking-type manhole is greater than the weight of the cover. A light-weight manhole cover is developed in this study by using a finite element stress analysis and the design of experiments. Static stress analysis and fracture experiments are also conducted to analyze the states of the initial product. The optimum light-weight manhole cover considering manufacturing molds is developed and tested. Consequently, the weight was found to reduce by 16%. In addition, the fracture load increased by 38%.

Numerical Modeling to Evaluate Rear Crashworthiness for Round Recliner of Automotive Seats (자동차 시트용 라운드 리클라이너의 후방 충돌 성능 평가를 위한 수치해석 모델링)

  • Kim, Jung-Min;Lee, Kyoung-Taek;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.64-71
    • /
    • 2009
  • The development of more safe recliners is an important issue in the automotive industry. However, the development of new recliners is costly and take much time because it is typically based on experimental evaluation using prototypes. This study presents the evaluation of rear crashworthiness for round recliner using finite element method. That reduces the number of repeating test and gives an information about stiffness. To evaluate rear crashworthiness, the FMVSS 301 simulation and pendulum impact simulation were performed. The load path on two simulations was observed and compared each other in this paper. Also stress, strain and internal energy was compared. It is attempted the tooth strength simulation using a substructure option on PAM-CRASH.

Buckling and vibration analysis of stiffened plate subjected to in-plane concentrated load

  • Srivastava, A.K.L.;Datta, P.K.;Sheikh, A.H.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.685-704
    • /
    • 2003
  • The buckling and vibration characteristics of stiffened plates subjected to in-plane concentrated edge loading are studied using finite element method. The problem involves the effects of non-uniform stress distribution over the plate. Buckling loads and vibration frequencies are determined for different plate aspect ratios, boundary edge conditions and load positions. The non-uniform stresses may also be caused due to the supports on the edges. The analysis presented determines the initial stresses all over the region considering the pre-buckling stress state for different kinds of loading and edge conditions. In the structural modeling, the plate and the stiffeners are treated as separate elements where the compatibility between these two types of elements is maintained. The vibration characteristics are discussed and the results are compared with those available in the literature and some interesting new results are obtained.