• Title/Summary/Keyword: element distribution

Search Result 3,807, Processing Time 0.032 seconds

Analysis for potential distribution of ZnO varistor using Finite Element Method (유한요소법을 이용한 ZnO 바리스터의 전위분포 해석)

  • Lee, Su-Kil;Kim, Do-Young;Jang, Kyung-Uk;Lee, Joon-Ung
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.733-736
    • /
    • 1992
  • In this paper, Finite Element Method was used for the analysis of Potential Distribution of ZnO varistor and visualizing the characteristics of conduction mechanism. The results can be obtained by 2-dimensional element division and numerical method for Poisson's equation.

  • PDF

Lattice based Microstructure Evolution Model for Monte Carlo Finite Element Analysis of Polycrystalline Materials (격자식 미세구조 성장 모델을 이용한 다결정 박막 소재의 유한 요소 해석)

  • 최재환;김한성;이준기;나경환
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.248-252
    • /
    • 2004
  • The mechanical properties of polycrystalline thin-films, critical for Micro-Electro-Mechanical Systems (MEMS) components, are known to have the size effect and the scatter in the length scale of microns by the numbers of intensive investigation by experiments and simulations. So, the consideration of the microstructure is essential to cover these length scale effects. The lattice based stochastic model for the microstructure evolution is used to simulate the actual microstructure, and the fast and reliable algorithm is described in this paper. The kinetics parameters, which are the key parameters for the microstructure evolution based on the nucleation and growth mechanism, are extracted from the given micrograph of a polycrystalline material by an inverse method. And the method is verified by the comparison of the quantitative measures, the number of grains and the grain size distribution, for the actual and simulated microstructures. Finite element mesh is then generated on this lattice based microstructure by the developed code. And the statistical finite element analysis is accomplished for selected microstructure.

A Study on Reduction Distribution in Tube Drawing Process (튜브 인발공정시 압하량 배분에 관한 연구)

  • Lee D. H.;Kim D. W.;Kim D. H.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.35-38
    • /
    • 2004
  • In general, tube drawing process is composed of two steps, so called first drawing and second drawing. Drawing cracks are mainly occurred during the 2nd drawing process due to the improper drawing process. In order to analyze the reduction distribution in successive two-step drawing process, tube drawing process was simulated by finite element method. From the finite element analysis, the balance between first and second reduction is proved to be important factor to prevent drawing cracks. Hence the numerical expression was developed for tube drawing process to distribute even strain and criteria curves that can predict the safe drawing region were also proposed using this numerical formula.

  • PDF

A Comparison Study on Load Distribution Behavior of Steel Box Girder Bridge (강상자형 교량의 하중분배 거동에 대한 비교 연구)

  • 나준호;정광모;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.313-321
    • /
    • 1999
  • To design steel box girder bridge, designers have taken the classical load distribution coefficient methods. Due to the rapidly developing computer technique, steel box girder bridge is simply modeled as grillage method for analyzing the girder, or as fully finite element method for more accurate and detailed analysis. Recently, cruciform space frame method is developed for modeling and analyzing it more simply and easily compared with finite element method. So, this study for the examination of upper methods' characteristics loaded unit moment load and analyzed the distortional deflection with shell element method and cruciform space frame method, and for three span three girder steel box bridge, loading DB-24 loads, analyzed it by upper methods and compared the results.

  • PDF

Effects of Excavation Methods on Tunnel Deformation Behavior using Finite Element Analysis (굴착공법이 터널변위 거동에 미치는 영향-유한요소해석)

  • Yoo, Chung-Sik;Kim, Joo-Mi;Kim, Sun-Bin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.199-207
    • /
    • 2006
  • Before getting to the actual study of the load distribution factor in various excavating methods, this research is preliminarily focused on the comparison of two different excavation methods, CD cut method and Ringcut method. Especially, the purpose of this research is to study the behavioral mechanism of two tunnels which share the same construction environment but different excavating method. Two numerical analysis models with the same tunnel section and material properties are compared in this study, and they are analyzed by 3D Finite Element Analysis. In each model, face stability, crown displacement, ground settlement, and shotcrete-lining stress are computed. Thus, the general behavior of CD cut method and Ringcut method are studied, and it certified what should be considered for the calculation of the load distribution factor.

  • PDF

A Study on the Analysis for the Nonlinear Magnetic Flux Distribution of a Transformer by Finite Element Method (자기적 비선형발생을 고려한 변칙적자동분석의 유한요소해석에 관한 연구)

  • Dal-Ho Im;Chan-O Kim
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.12
    • /
    • pp.419-426
    • /
    • 1983
  • This study is to analyze the nonlinear characteristics of magnetic flux distribution of a transformer by Finite Element Method using 2-dimensional elements. To accomplish this, first a single phase shell-type transformer is selected a model to be analyzed, and the element equation is derived by the vriational approach. And then using the numerical approximation of a magnetization curve and the Direct Convergence Method which is presented in this study, the magnetic nonlinear characteristic is analyzed. In this consequence, the resultant values are converged within 10 iterations of calculation. And in the comparison with the case of linear analysis, these results are more accurate and reasonable.

Finite Element Analysis for Drying Process of Ceramic Electric Insulator Considering Heat and Moisture Transfer (열 및 습도전달을 고려한 세라믹 애자 건조공정의 유한요소 해석)

  • Geum, Yeong-Tak;Jeong, Jun-Ho;Kim, Jun-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.36-46
    • /
    • 2001
  • Finite element analyses of the ceramic drying process are performed. The heat and moisture movements in green ceramics caused by temperature gradient, moisture gradient, conduction, convection and evaporation are considered. The finite element formulation for solving the temperature and moisture distributions which not only change the volume but also induce the hygro-thermal stress is carried out. In order to verify the formulation, the drying process of a ceramic electric insulator is simulated. Temperature distribution, moisture distribution, and hygro-thermal stress are compared with those of other researcher. Good agreements are achieved.

Prediction of Spread and Contact Region in Ring Rolling Process Using Rigid- plastic Finite Element Method (강소성 유한요소법을 이용한 링 압연 공정에서의 폭 퍼짐량 및 접촉영역 예측)

  • Ko, Young-Soo;Yoon, Hwan-Jin;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2670-2677
    • /
    • 2002
  • The ring rolling process involves three-dimensional non-steady material flow and continuous change of radius and thickness of the ring workpiece. In this study, the deformation analysis and geometric updating algorithm of the ring rolling process were verified by using the three-dimensional rigid-plastic finite element method. Manufacturing processes for plain ring and T-shaped ring were investigated by comparing experiments with simulation results, especially in side spread, load-stroke and pressure distribution, showing a good agreement. It was concluded that the simulation method would be a useful tool for the design of a ring rolling process.

Design and Characteristic Analysis of an 200[kW], 30000[rpm] Induction Motor for Gearless Turbo Machine (Gearless 터보기기용 200[kW], 30000[rpm] 유도전동기 설계 및 특성 해석)

  • Jo, Won-Young;Woo, Kyung-Il;Cho, Yun-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.420-427
    • /
    • 2006
  • This paper describes design and characteristic analysis of the 200[kW], 3000[rpm] induction motor for gearless turbo machine. It was designed by the loading distribution method and the results of characteristics obtained by the equivalent circuit method are compared with the results of circle diagram. To verify the validation of design 2D finite element method is used and also 3D finite element method is used to calculate the current density curve of the rotor bars when they are broken.

Effect of Interface in Three-phase Cord-Rubber Composites (세 가지 상을 갖는 코드섬유-고무 복합재료의 계면의 영향)

  • Kim, Jong-Kuk;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1249-1255
    • /
    • 2009
  • Cord-rubber composites widely used in tires show very complicated mechanical behavior such as nonlinearity and large deformation. Three-phase(cord, rubber and the interface) modeling has been used to analyze the stress distribution in the cord-rubber composites more accurately. In this study, finite element methods were performed using two-dimensional generalized plane strain element and plane strain element to investigate the stress distribution and effective modulus of cord-rubber composites. Neo Hookean model was used for rubber property and several interface properties were assumed for various loading directions. It was found that the interface properties affect the effective modulus and the distributions of shear stress.