DOI QR코드

DOI QR Code

Finite Element Analysis for Drying Process of Ceramic Electric Insulator Considering Heat and Moisture Transfer

열 및 습도전달을 고려한 세라믹 애자 건조공정의 유한요소 해석

  • 금영탁 (한양대학교 세라믹공정연구센터(CPRC)) ;
  • 정준호 (한양대학교 대학원 정밀기계공학과) ;
  • 김준한
  • Published : 2001.01.01

Abstract

Finite element analyses of the ceramic drying process are performed. The heat and moisture movements in green ceramics caused by temperature gradient, moisture gradient, conduction, convection and evaporation are considered. The finite element formulation for solving the temperature and moisture distributions which not only change the volume but also induce the hygro-thermal stress is carried out. In order to verify the formulation, the drying process of a ceramic electric insulator is simulated. Temperature distribution, moisture distribution, and hygro-thermal stress are compared with those of other researcher. Good agreements are achieved.

Keywords

References

  1. Luikov, A. V., 1975, 'Systems of Differential Equations of Heat and Mass Transfer in Capillary-Porous Bodies (Review),' Int. J. Heat Mass Transfer, Vol. 18, pp. 1-14 https://doi.org/10.1016/0017-9310(75)90002-2
  2. Luikov, A. V., 1975, Heat and Mass Transfer in Capillary Porous Bodies, Pergamon, Oxford
  3. Luikov, A. V., 1980, Heat and Mass Transfer, Mir Publishers, Moscow
  4. Whitaker, S., 1977, 'Simultaneous Heat, Mass and Momentum Transfer in Porous Media : A Theory of Drying,' Advances in Heat Transf., Vol. 13, pp. 119-203
  5. De Vris, D. A., 1958, 'Simultaneous Transfer of Heat and Moisture in Porous Media,' Trans. Am. Geophys. Un., Vol. 39, No. 5, pp. 909-916
  6. Philip, J. R. and De Vris, D. A., 1957, 'Moisture Movement in Porous Materials under Temperature Gradients,' Trans. Am. Geophys. Un., Vol. 38, No. 2, pp. 222-232
  7. Comini, G. and Lewis, R. W. 1976, 'A Numerical Solution of Two-Dimensional Problems Involving Heat and Mass Transfer,' Int. J. Heat Mass Transfer, Vol. 19, pp. 1387-1392 https://doi.org/10.1016/0017-9310(76)90067-3
  8. Thomas, H. R., Lewis, R. W. and Morgan, K., 1980, 'An Application of The Finite Element Method to The Drying of Timber,' Wood Fibre, Vol. 11, pp. 237-243
  9. Dhatt, G., Jacquemier, M. and Kadje, C., 1986, 'Modeling of Drying Refractory Concrete,' Drying '86, No. 1, pp. 94-104
  10. Gong, Z. X. and Mujumdar, A. S. 1969, 'Development of Drying Schedules for one-Heating Drying Refractory Concrete Slabs Based on A Finite Element Model,' J. Am. Ceram. Soc. Vol. 79, No. 6, pp. 1649-1658 https://doi.org/10.1111/j.1151-2916.1996.tb08777.x
  11. Lewis, R. W., Strada, M. and Comini, G. 1977, 'Drying-Induced Stresses in Porous Bodies,' Int. J. Num. Meth. Engng., Vol. 11, pp. 1175-1184 https://doi.org/10.1002/nme.1620110711
  12. Sih, G. C., Ogawa, A. and Chou, S. C. 1981, 'Two-Dimensional Transient Hygrothermal Stresses in Bodies with Circular Cavities : Moisture and Temperature Coupling Effect,' J. Thermal Stresses, Vol. 4, pp. 193-222 https://doi.org/10.1080/01495738108909963
  13. Steven, G. P., 1982, 'Internally Discontinuous Element for Moving Interface Problems,' Int. J. Num. Meth. Engng., Vol. 18, pp. 569-582 https://doi.org/10.1002/nme.1620180407