• Title/Summary/Keyword: electronic speckle pattern interferometry system

Search Result 49, Processing Time 0.02 seconds

Evaluation of Micro-Tensile Properties for Nano-coating Material TiN (나노 코팅재 TiN 의 마이크로 인장 특성 평가)

  • Huh, Yong-Hak;Kim, Dong-Iel;Hahn, Jun-Hee;Kim, Gwang-Seok;Yeon, Soon-Chang;Kim, Yong-Hyub
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.240-245
    • /
    • 2004
  • Tensile properties of hard coating material, TiN, were evaluated using micro-tensile testing system. TiN has been known as a hard coating material commonly used today. Micro-tensile testing system consisted of a micro tensile loading system and a micro-ESPI(Electronic Speckle Pattern Interferometry) system. Micro-tensile loading system had a maximum load capacity of 500mN and a resolution of 4.5 nm in stroke. TiN thin film $1{\mu}m$ thick was deposited on the Si wafer pre-deposited of $Si_3N_4$ film substrate by the closed field unbalanced magnetron sputtering (CFUBMS) process. Three kinds of micro-tensile specimen with the respective width of $50{\mu}m$, $100{\mu}m$ and $500{\mu}m$ were fabricated by MEMS process. The mechanical properties including tensile strength and elastic modulus were determined using the micro-tensile testing system and compared by those obtained by nano-indentation

  • PDF

A Study on Reliability Verification of Resonance Frequency Detection of Vibration Object using Time-average ESPI (시간 평균 ESPI를 이용한 진동 물체의 공진 주파수 검출 신뢰도 검증에 대한 연구)

  • Hong Kyung-Min;Ryu Weon-Jae;Kang Young-Jung;Lee Dong-Hwan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.930-933
    • /
    • 2005
  • Non-destructive inspection techniques using laser have been breading their application areas as well as growing their measurement skills together with the rapid development of circumferential technology like fiber optics. computer and image processing The ESPI technique is already on the stage of on-line testing with commercial products in developed country nations. Especially, this technique is expected to be applied to the nuclear industry, automobile and aerospace because it is proper for the vibration measurement and it can be applied to objects of a high temperature. This paper describes the use of the ESPI system for measuring vibration patterns on the reflecting objects. Using this system, high-quality Jo fringes for identifying mode shapes are displayed. A bias vibration is introduced into the reference beam to shift the Jo fringes so that fringe shift algorithms can be used to determine vibration amplitude. Using this method. amplitude fields for vibrating objects were obtained directly from the time-average interferometer recorded by the ESPI system.

  • PDF

Measurement of Tensile Properties Dependent on the Small-Scaled Specimen Dimension for Evaluation of In-Service Materials Properties (사용재 물성 평가를 위한 미소 시험편 크기에 따른 인장 특성 평가)

  • Huh, Yong-Hak;Kim, Dong-Iei;Kim, Dong-Jin;Lee, Hae-Moo;Park, Jong-Seo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.30-34
    • /
    • 2008
  • To evaluate the mechanical properties of in-service materials, tensile properties measurement using small-scaled specimen has been carried out. Tensile testing specimens with various dimensions, including standard and sub-size specimen specified in ASTM and ISO and small-scaled specimen, were prepared. Tensile strain in small-scaled specimen was measured using micro-ESPI system set up in this study. This system was used in the specimen with the parallel length of 2 mm and in subsequently measuring the strain under tensile loading. From each type of tensile specimen, stress-strain curves were determined. The dimension effect of the tensile properties was investigated comparing the tensile results obtained from standard specimens and small-scaled specimens. It was shown that the tensile strength for the small-scaled specimen is lower by 15% than those for the standard specimen.

Improvement of Sensitivity to In-plane Strain/Deformation Measurement by Micro-ESPI Technique (마이크로 ESPI 기법에 의한 면내 변형 측정 민감도 향상)

  • Kim Dong-Iel;Kee Chang-Doo;Huh Yong-Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.54-63
    • /
    • 2006
  • Enhancement methods of sensitivity to in-plane strain measurement by micro-ESPI(Electronic Speckle Pattern Interferometry) technique were proposed using TiN and Au thin films. Micro-tensile strain over the micro-tensile specimens, prepared in micro-scale by those films, was measured by micro-tensile loading system and micro-ESPI system developed in this study. The subsequent measurement of in-plane tensile strain in the micro-sized specimens was introduced using the micro-ESPI technique, and the micro-tensile stress-strain curves for these films were determined. To enhance the sensitivity to measurement of in-plane tensile strain, algorithms of the phase estimation by using curve fitting of inter-fringe and the discrete Fourier Transform with object-induced dynamic phase shifting were developed. Using these two algorithms, the micro-tensile strain-stress curves were generated. It is shown that the algorithms for enhancement of the sensitivity suggested in this study make the sensitivity to measurement of the in-plane tensile strain increase.

A Study on the Quantitative Measurement of In-plane Displacement of Carbon Steel for Machine Structures according to Rolling Direction using a dual-beam Shear Interferometer (듀얼 빔 전단간섭계를 이용한 압연방향에 따른 기계구조용 탄소강의 면내 변위 정량적 측정에 대한 연구)

  • Kang, Chan-Geun;Kim, Sang Chae;Kim, Han-Sub;Lee, Hang-Seo;Jung, Hyun-il;Jung, Hyun-Chul;Song, Jae-Geun;Kim, Kyeong-suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.39-48
    • /
    • 2021
  • In this paper, an in-plane deformation measuring system using a dual-beam shear interferometer was constructed to measure the in-plane deformation of the measuring object. The in-plane deformation of the object was quantitatively measured according to the load and surface treatment conditions of the object. We also verified the reliability of the proposed technique by simultaneously performing the technique with an electronic speckle pattern interferometry system (ESPI), which is another laser application measurement technology. Digital shearography directly measures the deformation gradient or strain components and has the advantages of being full-field, noncontact, highly sensitive, and robust. It offers a much higher measurement sensitivity compared with noncoherent measurement methods and is more robust and applicable to in-field tests.

Effect of Local Strain on Low Cycle Fatigue using ESPI System (ESPI System을 이용하여 측정한 국부 변형률이 저사이클 피로수명에 미치는 영향에 관한 연구)

  • Kim, Kyung-Su;Kim, Ki-Sung;Kwon, Jung-Min;Park, Seong-Mo;Kim, Beom-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.213-219
    • /
    • 2006
  • Low cycle fatigue cracks are mainly detected at discontinuous welded locations with high stresses under repeated cyclic static loads due to cargo leading and unloading. Theoretical and analytical methods have been used for evaluation of local stress and strain which have an effect on a prediction of fatigue life, but those have difficulties of considering stress concentration at notched location and complicated material behavior of welded joint or heat affected zone. Electronic speckle pattern interferometry(ESPI) system is nondestructive and non-contact measurement system which can get the relatively accurate full field strain at critical positions such as welded zone and structural discontinuous location. In this study, local strain was measured on welded cruciform joint by ESPI system and then low cycle fatigue test was performed. Effect of local strain on low cycle fatigue life was examined by measured values using ESPI system. Moreover, experimental fatigue life was compared with established S-N curves using theoretical local strain and stress calculated by Neuber's rule.

Performance Comparison between Optical Fiber Type ESPI and Bulk Type ESPI for the Internal Defect in Pressure Vessel (광섬유형과 벌크형 ESPI를 이용한 압력용기 내부 결함 측정에 관한 비교 연구)

  • Kim, Seong-Jong;Kang, Young-June;Hong, Kyung-Min;Lee, Jae-Hoon;Choi, Nak-Jung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.177-184
    • /
    • 2012
  • An optical defect detection method using ESPI(electronic speckle pattern interferometry) is proposed. ESPI is widely used as a non-contact measurement system which show deformation and phase map in real time. ESPI can be divided as the in-plane, out-of-plane and shearography by operation principle and target object and also divided with bulk type and optic fiber type by the optic configurations. This paper is focused on optic fiber type out-of-plane ESPI, which has the following advantages: (1) low cost; (2) reduction of the unreliable factors generated by separated optic components; (3) simplification of the optic configuration; (4) great reduction of volume; (5) flexibility, to be easily designed into different structures to adapt to inaccessible environments such as pipeline cavity and so on.

Quantitative Comparison of Out-of-Plane Deformation Measured by Dual-Function Interferometer System (이중기능 간섭계에 의해 측정된 면외변형의 정략적 비교)

  • Kim, Kyoung-Suk;Chang, Ho-Seob;Lee, Seung-Seok;Jung, Hyun-Chul;Kwag, Jae-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.33-39
    • /
    • 2008
  • Dual-function interferometer is an interferometer that has all features of ESPI (electronic speckle pattern interferometry) and shearography in one interferometer setup. The deformatiou of an object is directly obtained by ESPI while the slope of the deformation of an object is obtained by shearography. If the result of shearography is divided by shearing amount and integrated by numerical analyzing, then finally the reconstructed deformation of an object that is the same as the results directly obtained by ESPI can be measured by shearography. In this study, rubber and alruminum plates are used as specimen and its out-of-plane deformation is measured by ESPI and shearography setup of the dual-function interferometer. Each of the results obtained by ESPI and shearography is compared by using numerical integration to the result of shearography. From this study, it is confirmed that the reconstructed deformation results obtained by numerical integration good agree with the results obtained by ESPI.

A Study on Tensile Properties of Laminated Nanocomposite Fabricated by Selective Dip-Coating of Carbon Nanotubes (탄소나노튜브의 선택적 딥코팅을 이용해 제작된 적층 복합재료의 인장 물성에 대한 연구)

  • Kang Tae-June;Kim Dong-Iel;Huh Yong-Hak;Kim Yong-Hyup
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.23-28
    • /
    • 2006
  • Carbon nanotubes reinforced copper matrix laminated nanocomposites were developed and the mechanical properties were evaluated by using micro-tensile testing system. Sandwich-type laminated structure constituted with carbon nanotube layers as a reinforcement and electroplated copper matrix were fabricated by a new processing approach based on selective dip-coating of carbon nanotubes. The mechanical properties of nanocomposites were improved due to an enhanced load sharing capacity of carbon nanotubes homogeneously distributed within the in-plane direction, as well as a bridging effect of carbon nanotubes along the out-of-plane direction between the upper and lower matrices. The universality of the layering approach is applicable to a wide range of functional materials, and here we demonstrate its potential use in reinforcing composite materials.