• 제목/요약/키워드: electron carrier

Search Result 515, Processing Time 0.031 seconds

Spatial Distribution of Electron Number Density in an Inductively Coupled Plasma (유도결합 플라스마 공간내의 전자밀도 분포)

  • Beom Suk Choi
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.327-332
    • /
    • 1986
  • Spatial (radial and height) distribution of electron number density is measured for an inductively coupled plasma under five operating conditions: (1) no carrier gas, (2) carrier gas without aerosel, (3) carrier gas with aerosol, (4) carrier gas with desolvated aerosol, and (5) carrier gas with aerosol and excess lithium. A complete RF power mapping of electron density is obtained. The plasma electrons for a typical analytical torch are observed to be hollow at the radial center in the region close to the induction coil, but diffuse rapidly toward the center in the higher region of the plasma. The presence of excess Li makes no significant change in the electron density profiles. The increases in the RF power levels increase the values of electron density uniformly across the radial coordinate.

  • PDF

Electronic and carrier transport properties of small molecule donors

  • Valencia-Maturana, Ramon;Pao, Chun-Wei
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.75-96
    • /
    • 2017
  • As electron donor/acceptor materials for organic photovoltaic cells, small-molecules donors/acceptor are attracting more and more attention. In this work, we investigated the electronic structures, electrochemical properties, and charge carrier transport properties of four recently-synthesized small-molecule donors/acceptor, namely, DPDCPB (A), DPDCTB (B), DTDCPB (A1), and DTDCTB (B1), by a series of ab initio calculations. The calculations look into the electronic structure of singly oxidized and reduced molecules, the first anodic and cathodic potentials, and the electrochemical gaps. Results of our calculations were in accord with those from experiments. Using Marcus theory, we also computed the reorganization energies of hole/electron hoppings, as well as hole/electron transfer integrals of multiple possible molecular dimer configurations. Our calculations indicated that the electron/hole transport properties are very sensitive to the relative separations/orientations between neighboring molecules. Due to high reorganization energies for electron hopping, the hole mobilities in the molecular crystals are at least an order of magnitude higher than the electron mobilities.

A theory on the impossibility of the moving for hle and the primary electron as a carrier using the analyses, by quantum mechanics, of the structure of atoms and molecules (양자역학적 원자 및 분자 분석에 의한 정공의 이동 불가능성과 운반자로써의 주도 전자에 관한 이론)

  • 주정규
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.327-330
    • /
    • 1998
  • In this theory, we explained the impossibility of the motion or miving of the hole that has been recognized to be a carrier, by giving some fundamental reasons. We treated energy gap and impurity concentration, in p- and n-type region, as functions of the mobility that is one of te factors which determine current quantity, and analyzed the primary electron theory as a carrier by introducing 2 hypotheses.

  • PDF

A Study on Electric Characteristics of Multi-layer by Light Organic Emitting Diode (유기발광소자(Organic Light Emitting Diode)의 다층박막에 대한 전기적 특성 연구)

  • Lee Jung-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.10 no.2
    • /
    • pp.76-81
    • /
    • 2005
  • This research approached electrical characteristics of organic light emitting diodes getting into the spotlight by next generation display device. Basic mechanism of OLED's emitting is known as that electron by cathode of lower work function and hole by anode of higher work function are driven and recombine exciton-state being flowed in emitting material layer passing carrier transport layer In order to make many electron-hole pairs, we must manufacture device in multi-layer structure. There are Carrier Injection Layer(CIL), Carrier Transport Layer(CTL) and Emitting Material Layer(EML) in multi-layer structure. It is important that regulate thickness of layer for high luminescence efficiency and set mobility of hole and electron.

  • PDF

Hot-Carrier Induced GIDL Characteristics of PMOSFETs under DC and Dynamic Stress (직류 및 교류스트레스 조건에서 발생된 Hot-Carrier가 PMOSFET의 누설전류에 미치는 영향)

  • 류동렬;이상돈;박종태;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.12
    • /
    • pp.77-87
    • /
    • 1993
  • PMOSFETs were studied on the effect of Hot-Carrier induced drain leakage current (Gate-Induced-Drain-Leakage). The result turned out that change in Vgl(drain voltage where 1pA/$\mu$m of drain leadage current flows) was largest in the Channel-Hot-Hole(CHH) injection condition and next was in dynamic stress and was smallest in electron trapping (Igmax) condition under various stress conditions. It was analyzed that if electron trapping occurrs in the overlap region of gate and drain(G/D), it reduces GIDL current due to increment of flat-band voltage(Vfb) and if CHH is injected, interface states(Nit) were generated and it increases GIDL current due to band-to-defect-tunneling(BTDT). Especially, under dynamic stress it was confirmed that increase in GIDL current will be high when electron injection was small and CHH injection was large. Therefore as applying to real circuit, low drain voltage GIDL(BTDT) was enhaced as large as CHH Region under various operating voltage, and it will affect the reliablity of the circuit.

  • PDF

Effects of Thermal-Carrier Heat Conduction upon the Carrier Transport and the Drain Current Characteristics of Submicron GaAs MESFETs

  • Jyegal, Jang
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1997.11a
    • /
    • pp.451-462
    • /
    • 1997
  • A 2-dimensional numerical analysis is presented for thermal-electron heat conduction effects upon the electron transport and the drain current-voltage characteristics of submicron GaAs MESFETs, based on the use of a nonstationary hydrodynamic transport model. It is shown that for submicron GaAs MESFETs, electron heat conduction effects are significant on their internal electronic properties and also drain current-voltage characteristics. Due to electron heat conduction effects, the electron energy is greatly one-djmensionalized over the entire device region. Also, the drain current decreases continuously with increasing thermal conductivity in the saturation region of large drain voltages above 1 V. However, the opposite trend is observed in the linear region of small drain voltages below 1 V. Accordingly, for a large thermal conductivity, negative differential resistance drain current characteristics are observed with a pronounced peak of current at the drain voltage of 1 V. On the contrary, for zero thermal conductivity, a Gunn oscillation characteristic is observed at drain voltages above 2 V under a zero gate bias condition.

  • PDF

PMOSFET Hot Carrier Lifetime Dominated by Hot Hole Injection and Enhanced PMOSFET Degradation than NMOSFET in Nano-Scale CMOSFET Technology (PMOSFET에서 Hot Carrier Lifetime은 Hole injection에 의해 지배적이며, Nano-Scale CMOSFET에서의 NMOSFET에 비해 강화된 PMOSFET 열화 관찰)

  • 나준희;최서윤;김용구;이희덕
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.7
    • /
    • pp.21-29
    • /
    • 2004
  • Hot carrier degradation characteristics of Nano-scale CMOSFETs with dual gate oxide have been analyzed in depth. It is shown that, PMOSFET lifetime dominate the device lifetime than NMOSFET In Nano-scale CMOSFETs, that is, PMOSFET lifetime under CHC (Channel Hot Carrier) stress is much lower than NMOSFET lifetime under DAHC (Dram Avalanche Hot Carrier) stress. (In case of thin MOSFET, CHC stress showed severe degradation than DAHC for PMOSFET and DAHC than CHC for NMOSFET as well known.) Therefore, the interface trap generation due to enhanced hot hole injection will become a dominant degradation factor in upcoming Nano-scale CMOSFET technology. In case of PMOSFETs, CHC shows enhanced degradation than DAHC regardless of thin and thick PMOSFETs. However, what is important is that hot hole injection rather than hot electron injection play a important role in PMOSFET degradation i.e. threshold voltage increases and saturation drain current decreases due to the hot carrier stresses for both thin and thick PMOSFET. In case of thick MOSFET, the degradation by hot carrier is confirmed using charge pumping current method. Therefore, suppression of PMOSFET hot carrier degradation or hot hole injection is highly necessary to enhance overall device lifetime or circuit lifetime in Nano-scale CMOSFET technology

Comparison of turn-on/turn-off transient in Electron Irradiated and Proton Irradiated Silicon pn diode (전자와 양성자를 조사한 PN 다이오드의 turn-on/turn-off transient 특성 비교)

  • Lee, Ho-Sung;Lee, Jun-Ho;Park, Jun;Jo, Jung-Yol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1947-1949
    • /
    • 1999
  • Carrier lifetime in silicon power devices caused switching delay and excessive power loss at high frequency switching. We studied transient turn-on/turn-off transient characteristics of electron irradiated and proton irradiated silicon pn junction diodes. Both the electron and proton irradiation of power devices have already become a widely used practice to reduce minority carrier lifetime locally[1]. The sample is n+p junction diode, made by ion implantation on a $20\Omega.cm$ p-type wafer. We investigated turn-on/turn-off transient & breakdown voltage characteristics by digital oscilloscope. Our data show that proton irradiated samples show better performance than electron irradiated samples.

  • PDF

Degradation of Chlorinated Organic Compounds by Zero Valent Metals and an Electron carrier

  • Kim, Young-Hun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.53-56
    • /
    • 2001
  • The degradation of tetrachloroethene (PCE) and trichloroethene (TCE) by vitamin B$_{12}$, an electron mediator was examined when zero valent metals (ZVMs) were used as built electron donors. Dechlorination of PCE and TCE by iron and zinc in the presence of vitamin B$_{12}$ showed that the zinc and vitamin B$_{12}$ combination greatly enhances the reaction rates for both PCE and TCE, but iron and vitamin B$_{12}$ result in an increase in reactivity only for PCE degradation, not for TCE degradation in comparing with meta]s only. This result indicates vitamin B$_{12}$(I) Is active towards both PCE and TCE degradation while vitamin B$_{12}$(II) is active towards both PCE. Calculated activation energies for the dechlorination of PCE in the presence of Vitamin B$_{12}$ showed that vitamin B$_{12}$ lowered the activation energy about 40-60 kJ/㏖ for the both metals.the both metals.

  • PDF

The defect nature and electrical properties of the electron irradiated $p^+-n^-$ junction diode (전자 조사된 $p^+-n^-$ 접합 다이오드의 결함 특성과 전기적 성질)

  • 엄태종;강승모;김현우;조중열;김계령;이종무
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.1
    • /
    • pp.14-21
    • /
    • 2004
  • It is essential to increase the switching speed of power devices to reduce the energy loss because high frequency is commonly used in power device operation these days. In this work electron irradiation has been conducted to reduce the lifetime of minority carriers and thereby to increase the switching speed of a$p^+- n^-$ junction diode. Effects of electron irradiation on the electrical properties of the diode are reported The switching speed is effectively increased. Also the junction leakages and the forward voltage drop which are anticipated to increase are found to be negligible in the $p^+- n^-$ junction diodes irradiated with the optimum energy and dose. The analysis results of DLTS and C-V profiling indicate that the defects induced by electron irradiation in the silicon substrate are donor-like ones which have the energy levels of 0.284 eV and 0.483 eV. Considering all the experimental results in this study, it might be concluded that electron irradiation is a very useful technique in improving the switching speed and thereby reducing the energy loss of $p^+- n^-$ junction diode power devices.