• Title/Summary/Keyword: electron beam

Search Result 2,213, Processing Time 0.026 seconds

Skull Reconstruction with Custom Made Three-Dimensional Titanium Implant

  • Cho, Hyung Rok;Roh, Tae Suk;Shim, Kyu Won;Kim, Yong Oock;Lew, Dae Hyun;Yun, In Sik
    • Archives of Craniofacial Surgery
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 2015
  • Background: Source material used to fill calvarial defects includes autologous bones and synthetic alternatives. While autologous bone is preferable to synthetic material, autologous reconstruction is not always feasible due to defect size, unacceptable donor-site morbidity, and other issues. Today, advanced three-dimensional (3D) printing techniques allow for fabrication of titanium implants customized to the exact need of individual patients with calvarial defects. In this report, we present three cases of calvarial reconstructions using 3D-printed porous titanium implants. Methods: From 2013 through 2014, three calvarial defects were repaired using custom-made 3D porous titanium implants. The defects were due either to traumatic subdural hematoma or to meningioma and were located in parieto-occipital, fronto-temporo-parietal, and parieto-temporal areas. The implants were prepared using individual 3D computed tomography (CT) data, Mimics software, and an electron beam melting machine. For each patient, several designs of the implant were evaluated against 3D-printed skull models. All three cases had a custom-made 3D porous titanium implant laid on the defect and rigid fixation was done with 8 mm screws. Results: The custom-made 3D implants fit each patient's skull defect precisely without any dead space. The operative site healed without any specific complications. Postoperative CTs revealed the implants to be in correct position. Conclusion: An autologous graft is not a feasible option in the reconstruction of large calvarial defects. Ideally, synthetic materials for calvarial reconstruction should be easily applicable, durable, and strong. In these aspects, a 3D titanium implant can be an optimal source material in calvarial reconstruction.

Polarization Phase-shifting Technique for the Determination of a Transparent Thin Film's Thickness Using a Modified Sagnac Interferometer

  • Kaewon, Rapeepan;Pawong, Chutchai;Chitaree, Ratchapak;Bhatranand, Apichai
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.474-481
    • /
    • 2018
  • We propose a polarization phase-shifting technique to investigate the thickness of $Ta_2O_5$ thin films deposited on BK7 substrates, using a modified Sagnac interferometer. Incident light is split by a polarizing beam splitter into two orthogonal linearly polarized beams traveling in opposite directions, and a quarter-wave plate is inserted into the common path to create an unbalanced phase condition. The linearly polarized light beams are transformed into two circularly polarized beams by transmission through a quarter-wave plate placed at the output of the interferometer. The proposed setup, therefore, yields rotating polarized light that can be used to extract a relative phase via the self-reference system. A thin-film sample inserted into the cyclic path modifies the output signal, in terms of the phase retardation. This technique utilizes three phase-shifted intensities to evaluate the phase retardation via simple signal processing, without manual adjustment of the output polarizer, which subsequently allows the thin film's thickness to be determined. Experimental results show that the thicknesses obtained from the proposed setup are in good agreement with those acquired by a field-emission scanning electron microscope and a spectroscopic ellipsometer. Thus, the proposed interferometric arrangement can be utilized reliably for non-contact thickness measurements of transparent thin films and characterization of optical devices.

Solidification of high level waste using magnesium potassium phosphate compound

  • Vinokurov, Sergey E.;Kulikova, Svetlana A.;Myasoedov, Boris F.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.755-760
    • /
    • 2019
  • Compound samples based on the mineral-like magnesium potassium phosphate matrix $MgKPO_4{\times}6H_2O$ were synthesized by solidification of high level waste surrogate. Phase composition and structure of synthesized samples were studied by XRD and SEM methods. Compressive strength of the compounds is $12{\pm}3MPa$. Coefficient of thermal expansion of the samples in the range $250-550^{\circ}C$ is $(11.6{\pm}0.3){\times}10^{-6}1/^{\circ}C$, and coefficient of thermal conductivity in the range $20-500^{\circ}C$ is $0.5W/(m{\times}K)$. Differential leaching rate of elements from the compound, $g/(cm^2{\times}day)$: $Mg-6.7{\times}10^{-6}$, $K-3.0{\times}10^{-4}$, $P-1.2{\times}10^{-4}$, $^{137}Cs-4.6{\times}10^{-7}$; $^{90}Sr-9.6{\times}10^{-7}$; $^{239}Pu-3.7{\times}10^{-9}$, $^{241}Am-9.6{\times}10^{-10}$. Leaching mechanism of radionuclides from the samples at the first 1-2 weeks of the leaching test is determined by dissolution ($^{137}Cs$), wash off ($^{90}Sr$) or diffusion ($^{239}Pu$ and $^{241}Am$) from the compound surface, and when the tests continue to 90-91 days - by surface layer depletion of compound. Since the composition and physico-chemical properties of the compound after irradiation with an electron beam (absorbed dose of 1 MGy) are constant the radiation resistance of compound was established.

Property of Nano-thickness Nickel Silicides with Low Temperature Catalytic CVD (Catalytic CVD 저온공정으로 제조된 나노급 니켈실리사이드의 물성)

  • Choi, Yongyoon;Kim, Kunil;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.133-140
    • /
    • 2010
  • 10 nm thick Ni layers were deposited on 200 nm $SiO_2/Si$ substrates using an e-beam evaporator. Then, 60 nm or 20 nm thick ${\alpha}$-Si:H layers were grown at low temperature (<$200^{\circ}C$) by a Catalytic-CVD. NiSi layers were already formed instantaneously during Cat-CVD process regardless of the thickness of the $\alpha$-Si. The resulting changes in sheet resistance, microstructure, phase, chemical composition, and surface roughness with the additional rapid thermal annealing up to $500^{\circ}C$ were examined using a four point probe, HRXRD, FE-SEM, TEM, AES, and SPM, respectively. The sheet resistance of the NiSi layer was 12${\Omega}$/□ regardless of the thickness of the ${\alpha}$-Si and kept stable even after the additional annealing process. The thickness of the NiSi layer was 30 nm with excellent uniformity and the surface roughness was maintained under 2 nm after the annealing. Accordingly, our result implies that the low temperature Cat-CVD process with proposed films stack sequence may have more advantages than the conventional CVD process for nano scale NiSi applications.

Predicting defects of EBM-based additive manufacturing through XGBoost (XGBoost를 활용한 EBM 3D 프린터의 결함 예측)

  • Jeong, Jahoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.641-648
    • /
    • 2022
  • This paper is a study to find out the factors affecting the defects that occur during the use of Electron Beam Melting (EBM), one of the 3D printer output methods, through data analysis. By referring to factors identified as major causes of defects in previous studies, log files occurring between processes were analyzed and related variables were extracted. In addition, focusing on the fact that the data is time series data, the concept of a window was introduced to compose variables including data from all three layers. The dependent variable is a binary classification problem with the presence or absence of defects, and due to the problem that the proportion of defect layers is low (about 4%), balanced training data were created through the SMOTE technique. For the analysis, I use XGBoost using Gridsearch CV, and evaluate the classification performance based on the confusion matrix. I conclude results of the stuy by analyzing the importance of variables through SHAP values.

Determination of X-ray and gamma-ray shielding capabilities of recycled glass derived from deteriorated silica gel

  • P. Sopapan;O. Jaiboon;R. Laopaiboon;C. Yenchai;C. Sriwunkum;S. Issarapanacheewin;T. Akharawutchayanon;K. Yubonmhat
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3441-3449
    • /
    • 2023
  • We determined the radiation shielding properties for 10CaO-xPbO-(90-x) deteriorated silica gel (DSG) glass system (x = 20, 25, 30, 35, 40, and 45 mol.%). The mass attenuation coefficient (MAC) has been estimated at photon energies of 74.23, 97.12, 122, 662, 1173, and 1332 keV using a narrow beam X-ray attenuation and transmission experiment, the XCOM program, and a PHITS simulation. The obtained MAC values were applied to estimate the half value layer (HVL), mean free path (MFP), effective atomic number, and effective electron density. Results show that the MAC value of the studied glasses ranges between 0.0549 and 1.4415 cm2/g, increases with the amount of PbO, and decreases with increasing photon energy. The HVL and MFP values decrease with increasing PbO content and increase with increasing photon energy. The recycled glass, with the addition of PbO content (20-45 mol.%), exhibited excellent radiation shielding capabilities compared to standard barite and ferrite concretes and some glass systems. Moreover, the experimental radiation shielding parameters agree with the XCOM and PHITS values. This study suggests that this new waste-recycled glass is an effective and cost-saving candidate for X-ray and gamma-ray shielding applications.

Experimental Techniques for Surface Science with Synchrotron Radiation

  • Jonhnson, R.L.;Bunk, O.;Falkenberg, G.;Kosuch, R.;Zeysing, J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.17-17
    • /
    • 1998
  • Synchrotron radiation is produced when charged particles moving with relativistic velocities a are accelerated - for example, deflected by the bending magnets which guide the electron or p positrons in circular accelerators or storage rings. By using special focusing magnetic lattices i in the particle accelerators it is possible to make the dimensions of the particle beam very small with a hi맹 charge density which results in a light source with high b디lIiance. Synchrotron light h has important properties which make it ideal for a wide range of investigations in surface s science. The fact that the spectrum of electromagnetic radiation emitted in a bending magnet e extends in a continuum from the 얹r infra red region to hard x-rays means that it is id않I for a v variety of spectroscopic studies. Since there are no convenient lasers, or other really bright l light sources, in the vacuum ultraviolet and soft x-ray re.밍ons the development of synchrotron r radiation has enabled enormous advances to be made in this di펌C비t spectr따 re밍on. P Polarization-dependent measurements, for ex없nple ellipsometry or circular dichroism studies a are possible because the radiation has a well-defined polarization - linear in the plane of orbit w with additional right-circular, or left-circular, components for emission an생es above, or below, t the horizontal, respectively. Since the synchrotron light is emitted from a bunch of charge c circulating in a ring the light is emitted with a well-defined time structure with a short flash of l light every time a bunch passes an exit port. The time structure depends on the size of the ring a and the number and sequence of filling of the bunches. A pulsed light source enables time¬r resolved studies to be performed which provide direct information on the lifetimes and decay m modes of excited states and in addition opens up the possibility of using time of flight t techniques for spectroscopic studies. The fact that synchrotron radiation is produced in a clean u ultrahi야 vacuum environment is of gr않t importance for surce science studies. The current t비rd generation synchrotron light sources provide exceptionally high baliance and stability a and open up possibilities for experiments which would have been inconceivable only a short time ago.

  • PDF

A Study on the Magnetic Properties of Ion Irradiated Cu/Co Multilayer System

  • Kim, T.Y.;Chang, G.S.;Son, J.H.;Kim, S.H.;Shin, S.W.;Chae, K.H.;Sung, M.C.;Lee, J.;Jeong, K.;Lee, Y.P.;;Whang, C.N
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.163-163
    • /
    • 2000
  • In this research, we used the ion irradiation technique which has an advantae in improving intentionally the properties of surface and interface in a non-equilibrium, instead of the conventional annealing method which has been known to improve the material properties in the equilibrium stat. Cu/Co multilayered films were prepared on SiN4/SiO2/Si substrates by the electron-beam evaporation for the Co layers and the thermal evaporation for the Cu layers in a high vacuum. The ion irradiation with a 80keV Ar+ was carried out at various ion doses in a high vacuum. Hysteresis loops of the films were investigated by magneto-optical polar Kerr spectroscopy at various experimental conditions. The change of atomic structure of the films before and after the ion irradiation was studied by glancing angle x-ray diffraction, and the intermixing between Co and Cu sublayers was confirmed by Rutherford backscattering spectroscopy. The surface roughness and magneto-resistance were measured by atomic force microscopy and with a four-point probe system, respectively. During the magneto-resistance measurement, we changed temperature and the direction of magnetization. From the results of experiments, we found that the change at the interfaces of the Cu/Co multilayered film induced by ion irradiation cause the change of magnetic properties. According to the change in hysteresis loop, the surface inplane component of magnetic easy axis was isotropic before the ion irradiation, but became anisotropic upon irradiation. It was confirmed that this change influences the axial behavior of magneto-resistance. Especially, the magneto-resistance varied in accordance with an external magnetic field and the direction of current, which means that magneto-resistance also shows the uniaxial behavior.

  • PDF

Fabrication of IBAD-MgO template by continuous reel-to-reel process (연속 reel-to-reel 공정을 이용한 IBAD-MgO template 제조)

  • Ko, K.P.;Ha, H.S.;Kim, H.K.;Yu, K.K.;Ko, R.K.;Moon, S.H.;Oh, S.S.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.18-21
    • /
    • 2007
  • Highly textured MgO template by ion-beam-assisted deposition(IBAD) was successfully fabricated using a continuous reel-to-reel(R2R) mode. To enlarge the deposition area, the previous IBAD system was modified into the system with 14-pass and five heating zone. Every processing step was carried out using this multi-turn IBAD system. The overall process consists of R2R electropolishing of a hastelloy C276 tape, deposition of $Al_2O_3$ diffusion barrier, $Y_2O_3$ seed layer, IBAD-MgO and homoepi-MgO layer. The IBAD-MgO templates were fabricated using the IBAD system with 216 cm-length deposition zone and 32 cm diameter ion source. The texture of MgO films developed during the IBAD process was monitored by in-situ reflection high energy electron diffraction(RHEED) to optimize the IBAD process. Recently, 100 m long IBAD-MgO tape with in-plane texture of $\Delta{\phi}<10^{\circ}$ was successfully fabricated using the modified IBAD system. In this report, the detailed deposition condition of getting a long length IBAD-MgO template with a good epitaxy is described.

Dosimetric Evaluation of Synthetic Computed Tomography Technique on Position Variation of Air Cavity in Magnetic Resonance-Guided Radiotherapy

  • Hyeongmin Jin;Hyun Joon An;Eui Kyu Chie;Jong Min Park;Jung-in Kim
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.142-149
    • /
    • 2022
  • Purpose: This study seeks to compare the dosimetric parameters of the bulk electron density (ED) approach and synthetic computed tomography (CT) image in terms of position variation of the air cavity in magnetic resonance-guided radiotherapy (MRgRT) for patients with pancreatic cancer. Methods: This study included nine patients that previously received MRgRT and their simulation CT and magnetic resonance (MR) images were collected. Air cavities were manually delineated on simulation CT and MR images in the treatment planning system for each patient. The synthetic CT images were generated using the deep learning model trained in a prior study. Two more plans with identical beam parameters were recalculated with ED maps that were either manually overridden by the cavities or derived from the synthetic CT. Dose calculation accuracy was explored in terms of dose-volume histogram parameters and gamma analysis. Results: The D95% averages were 48.80 Gy, 48.50 Gy, and 48.23 Gy for the original, manually assigned, and synthetic CT-based dose distributions, respectively. The greatest deviation was observed for one patient, whose D95% to synthetic CT was 1.84 Gy higher than the original plan. Conclusions: The variation of the air cavity position in the gastrointestinal area affects the treatment dose calculation. Synthetic CT-based ED modification would be a significant option for shortening the time-consuming process and improving MRgRT treatment accuracy.