• Title/Summary/Keyword: electrochemical modification

Search Result 161, Processing Time 0.028 seconds

Surface Modification of Gold Electrode Using Nafion Polymer and Its Application as an Impedance Sensor for Measuring Osmotic Pressure (나피온 폴리머를 이용한 금 전극의 표면 개질 및 이의 삼투압 측정용 임피던스 센서 응용)

  • Min Sik, Kil;Min Jae, Kim;Jo Hee, Yoon;Jinwu, Jang;Kyoung G., Lee;Bong Gill, Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.9-14
    • /
    • 2023
  • In this work, we developed a Nafion polymer-coated impedance sensor with two gold electrode configurations to measure the ion concentration in solution samples. The gold electrodes were fabricated through the sputtering process, followed by surface modification using Nafion polymer. The resulting sensors enable the prevention of the polarization phenomenon on the electrode surface, resulting in stable measurement of electrochemical signals. Spectroscopy and scanning electron microscopy measurements revealed that the thin film of Nafion was coated uniformly onto the surface of the gold electrode. The Nafion-coated sensor exhibited more stable impedance signals than the conventional gold electrode. It showed a highly reliable calibration curve (R2 = 0.983) of the impedance sensor using a standard sodium chloride solution. In addition, a comparison experiment between the impedance sensor and a commercial conductivity sensor was performed to measure the ion concentration of artificial tears, showing similar results for the two sensors.

Development of a COD(Chemical Oxygen Demand) Sensor Using an Electrode-surface Grinding Unit (전극표면 연마 유니트를 이용한 전기화학적 COD측정용 센서의 개발)

  • Yoon, Seok-Min;Choi, Chang-Ho;Park, Byung-Sun;Jin, Gil-Joo;Jeong, Bong-Geun;Hyun, Moon-Sik;Park, Jong-Man;Lee, Seung-Sun;Yi, Dong-Heui;Kim, Hyung-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.453-458
    • /
    • 2006
  • An electrochemical COD(Chemical Oxygen Demand) sensor using an electrode-surface finding unit has been constructed. The electrolyzing(oxidizing) action of copper on the organic species was used as the basis of the COD measuring sensor. Using a simple three electrode cell, organic species which has been activated by the catalytic action of copper is oxidized at a working electrode, poised at a positive potential. A novel modification of the above method allowed for extended use of the electrode, in which the action of the electrode is regenerated by an electrode-surface grinding unit. When samples obtained from a wastewater treatment factory were measured, a linear correlation($r^2=0.93$) between the measured value(EOD) and $COD_{Mn}$ of the samples was observed. Overall results indicated that the electrochemical sensor with grinding unit could be applied for continuous measurements of COD in practical fields.

A Study of Electrochemical Characteristics on Copper Film (Copper 막의 전기화학적 특성에 관한 연구)

  • Han, Sang-Jun;Park, Sung-Woo;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.603-604
    • /
    • 2006
  • We investigated the effects of oxidizer additive on the performance of Cu-CMP process using commonly used tungsten slurry. According to the CMP removal rates and particle size distribution, and the micro- structures of surface layer as a function of oxidizer contents were greatly influenced by the slurry chemical composition of oxidizers. The difference in removal rate and roughness of copper surface are believed to cause by modification in the mechanical behavior of $Al_{2}O_3$ abrasive particles in CMP slurry.

  • PDF

Crystallinity and Battery Properties of Lithium Manganese Oxide Spinel with Lithium Titanium Oxide Spinel Coating Layer on Its Surface

  • Ji, Mi-Jung;Kim, Eun-Kyung;Ahn, Yong-Tae;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.633-637
    • /
    • 2010
  • In this study, lithium manganese oxide spinel ($LiMn_{1.9}Fe_{0.1}Nb_{0.0005}O_4$) as a cathode material of lithium ion secondary batteries is synthesized with spray drying, and in order to increase its crystallinity and electrochemical properties, the granulated $LiMn_{1.9}Fe_{0.1}Nb_{0.0005}O_4$ particle surface is coated with lithium titanium oxide spinel ($Li_4Ti_5O_{12}$) through a sol-gel method. The granulated particles present a higher tap density and lower specific surface area. The crystallinity and discharge capacity of the $Li_4Ti_5O_{12}$ coated material is relatively higher than uncoated material. With the coating layer, the discharge capacity and cycling stability are increased and the capacity fading is suppressed successfully.

A Study of Electrochemical Characteristics on Copper Film (Copper 막의 전기화학적 특성에 관한 연구)

  • Han, Sang-Jun;Park, Sung-Woo;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1269-1270
    • /
    • 2006
  • We investigated the effects of oxidizer additive on the performance of Cu-CMP process using commonly used tungsten slurry. According to the CMP removal rates and particle size distribution, and the micro-structures of surface layer as a function of oxidizer contents were greatly influenced by the slurry chemical composition of oxidizers. The difference in removal rate and roughness of copper surface are believed to cause by modification in the mechanical behavior of $Al_2O_3$ abrasive particles in CMP slurry.

  • PDF

Organic / inorganic composite membrane for Polymer Electrolyte Membrane Fuel Cell (고분자전해질 연료전지용 유기/무기 복합 전해질)

  • Choi Seong Ho;Hong Hyeon Sil;Lee Heung Chan;Kim Yu Mi;Kim Geon
    • 한국전기화학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.169-171
    • /
    • 2003
  • Organic/inorganic hybrid membranes have been prepared and evaluated as polymer electrolytes in a polymer electrolyte membrane fuel cell (PEMFC). Previously, partially fluorinated poly (arylenether) was synthesized and the polymer was sulfonated by fuming sulfuric acid$(30\%\;SO_3)$. Modification of these polymers with coupling agent and inorganic materials was carried out to prepare membranes. Membranes cast from these materials were investigated in relation to the proton conductivity and weight loss at the room temperature. It was found that these membranes had a higher conductivity of $10^{-2}\;Scm^{-1}$ at the room temperature. But inorganic materials have leaked out from the hybrid membrane. If this problem is resolved, organic/inorganic hybrid membranes will become satisfactory Polymer electrolytes for the PEMFC.

  • PDF

Theoretical Modeling of the Kinetics of External Hydrogen Embrittlement (수소 취성 속도에 관한 이론적 모델링)

  • Han, Jeong-Seb;Macdonald, Digby D.
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.4
    • /
    • pp.324-333
    • /
    • 2005
  • The kinetics of external hydrogen embrittlememt is considered. The equation of the crack growth rate (CGR) is derived from modification of the model developed by Wilkinson and Vitek. After calculation of hydrogen pressure build-up in the void, the effect of the internal hydrogen pressure on the void growth is added. The CGR is expressed by two terms. One is the term dependent on the critical stress, which is exactly same as Wilkinson and Vitek. The other is term dependent on the pressure of the hydrogen in void.

Duplex Surface Modification with Micro-arc Discharge Oxidation and Magnetron Sputtering for Aluminum Alloys

  • Tong, Honghui;Jin, Fanya;He, Heng
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.21-27
    • /
    • 2003
  • Micro-arc discharge oxidation (MDO) is a cost-effective plasma electrolytic process which can be used to improve the wear and corrosion resistance of Al-alloy parts by forming a alumina coating on the component surface. However, the MDO coated Al-alloy components often exhibit relatively high friction coefficients and low wear resistance fitted with many counterface materials, additionally, the pitting corrosion for the MDO coated AI-alloy components, especially for a thinner alumina coating, often occurs in atmosphere circumstance due to the porous alumina coats. Therefore, a duplex treatment, combining a MDO coated ahumina thin layer with a TiN coating, prepared by magnetron sputtering (MS), has been investigated. The Vicker's microhardness, pin-on-disc, electrochemical measurement, salt spray, XRD and SEM tests were used to characterize and analyze the treated samples. The work demonstrates that the MDO/MS coated samples have a combination of a very low friction coefficient and good wear resistance as well as corrosion since the micro-holes on alumina coating are partly or fully covered by TiN material.

SCANNING PROBE NANOPROCESSING

  • Sugimura, Hiroyuki;Nakagiri, Nobuyuki
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.314-324
    • /
    • 1996
  • Scanning probe microscopes (SPMs) such as the scanning tunneling microscope (STM) and the atomic force microscope (AFM) were used for surface modification tools at the nanometer scale. Material surfaces, i. e., titanium, hydrogen-terminated silicon and trimethylsilyl organosilane monolayer on silicon, were locally oxidized with the best lateral spatial resolution of 20nm. The principle behind this proximal probe oxidation method is scanning probe anodization, that is, the SPM tip-sample junction connected through a water column acting as a minute electrochemical cell. An SPM-nanolithogrphy process was demonstrated using the organosilane monolayer as a resist. Area-selective chemical modifications, i. e., etching, electroless plating with gold, monolayer deposition and immobilization of latex nanoparticles; were achieved in nano-scale resolution. The area-selectivity was based on the differences in chemical properties between the SPM-modified and unmodified regions.

  • PDF

A Study of Electrochemical Characteristics on Copper Film (Copper 막의 전기화학적 특성에 관한 연구)

  • Han, Sang-Jun;Park, Sung-Woo;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1729-1730
    • /
    • 2006
  • We investigated the effects of oxidizer additive on the performance of Cu-CMP process using commonly used tungsten slurry. According to the CMP removal rates and particle size distribution, and the micro-structures of surface layer as a function of oxidizer contents were greatly influenced by the slurry chemical composition of oxidizers. The difference in removal rate and roughness of copper surface are believed to cause by modification in the mechanical behavior of $Al_{2}O_{3}$ abrasive particles in CMP slurry.

  • PDF