• Title/Summary/Keyword: electrochemical methods

Search Result 568, Processing Time 0.024 seconds

An Electrochemical Evaluation of the Corrosion Property on the Welded Zone of Sea Water Pipe according to Welding Materials (용접 재료 별 해수 배관 용접부위의 부식 특성에 관한 전기화학적 평가)

  • Kim, Jin-Gyeong;Won, Chang-Uk;Jo, Hwang-Rae;Lee, Myung-Hoon;Kim, Yun-Hae;Moon, Kyung-Man
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.39-46
    • /
    • 2007
  • The sea water pipe of a ship's engine room is a severely corrosive environment caused by fast flawing sea water containing chloride ions and high conductivity. Therefore, leaking of sea water may occur as a result of local corrosion of the welded zone. Leaking is usually controlled by various welding methods. In this study, when the sea water pipe is welded with certain welding methods and welding electrodes, the corrosion resistance of WM (Welding metal) and HAZ (Heat affected zone) was investigated using electrochemical methods. Although the corrosion potential of the HAZ is higher than that of WM, the corrosion resistance of WM is superior to HAZ. However, when WM and HAZ are both opened to the sea water, the WM part with the anode was more seriously corroded than was the HAZ of the cathode by performance of a galvanic cell due to difference of the corrosion potential between HAZ and WM. In particular TIG welding showed relatively good results in corrosion resistance of both HAZ and WM compared to other welding methods.

Electrochemical Characteristics of Nanotubular Ti-25Nb-xZr Ternary Alloys for Dental Implant Materials

  • Byeon, In-Seop;Park, Seon-Young;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • v.10 no.1
    • /
    • pp.10-21
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the electrochemical characteristics of nanotubular Ti-25Nb-xZr ternary alloys for dental implant materials. Materials and Methods: Ti-25Nb-xZr alloys with different Zr contents (0, 3, 7, and 15 wt.%) were manufactured using commercially pure titanium (CP-Ti), niobium (Nb), and zirconium (Zr) (99.95 wt.% purity). The alloys were prepared by arc melting in argon (Ar) atmosphere. The Ti-25Nb-xZr alloys were homogenized in Ar atmosphere at $1,000^{\circ}C$ for 12 hours followed by quenching into ice water. The microstructure of the Ti-25Nb-xZr alloys was examined by a field emission scanning electron microscope. The phases in the alloys were identified by an X-ray diffractometer. The chemical composition of the nanotube-formed surfaces was determined by energy-dispersive X-ray spectroscopy. Self-organized $TiO_2$ was prepared by electrochemical oxidation of the samples in a $1.0M\;H_3PO_4+0.8wt.%$ NaF electrolyte. The anodization potential was 30 V and time was 1 hour by DC supplier. Surface wettability was evaluated for both the metallographically polished and nanotube-formed surfaces using a contact-angle goniometer. The corrosion properties of the specimens were investigated using a 0.9 wt.% aqueous solution of NaCl at $36^{\circ}C{\pm}5^{\circ}C$ using a potentiodynamic polarization test. Result: Needle-like structure of Ti-25Nb-xZr alloys was transform to equiaxed structure as Zr content increased. Nanotube formed on Ti-25Nb-xZr alloys show two sizes of nanotube structure. The diameters of the large tubes decreased and small tubes increased as Zr content increased. The lower contact angles for nanotube formed Ti-25NbxZr alloys surfaces showed compare to non-nanotube formed surface. The corrosion resistance of alloy increased as Zr content increased, and nanotube formed surface showed longer the passive regions compared to non-treatment surface. Conclusion: It is confirmed that corrosion resistance of alloy increased as Zr content increased, and nanotube formed surface has longer passive region compared to without treatment surface.

Detection of Human Papillomavirus in Male and Female Urine by Electrochemical DNA Chip and PCR Sequencing

  • Nilyanimit, Pornjarim;Wanlapakorn, Nasamon;Niruthisard, Somchai;Pohthipornthawat, Natkrita;Karalak, Anant;Laowahutanont, Piyawat;Phanuphak, Nittaya;Gemma, Nobuhiro;Poovorawan, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5519-5525
    • /
    • 2013
  • Background: Cervical cancer is the second most common cancer in Thai women after breast cancer. Currently, the Papanicolaou (Pap) smear is the recommended procedure for cervical cancer screening in Thailand, but only a relatively small percentage of women follow this screening program. An alternative method to detect HPV genotypes associated with cervical cancer is self-sampling of urine, which is a more widely accepted method. Our study aimed to evaluate the prevalence of HPV in Thai women using urine and cervical swabs and prevalence of HPV in Thai men using urine samples. Materials and Methods: Tumorigenic HPV detection was accomplished by electrochemical DNA chip and PCR/direct sequencing. In addition to HPV prevalence, we report the concordance between different methods and sample types. One-hundred and sixteen women and 100 men were recruited. Histological examination revealed normal cytology in 52 women, atypical squamous cells of undetermined significance (ASCUS) in 9, low-grade squamous intraepithelial lesions (LSIL) in 24, and high-grade squamous intraepithelial lesions (HSIL) in 31. One-hundred men were classified as heterosexuals (n=45) and homosexuals (n=55). Results: The most prevalent HPV genotype in our study was HPV16. The HPV detection rate was generally lower in urine samples compared with cervical samples. Overall, there was good agreement for the detection of carcinogenic HPV from female cervical samples between the DNA chip and PCR/sequencing, with 88.8% total agreement and a kappa value of 0.76. In male urine samples, the level of agreement was higher in heterosexuals compared with homosexuals. Conclusions: Further improvement is required to increase an overall yield of HPV DNA detection in urine samples before clinical application of a urine-based HPV screening program. The electrochemical DNA chip test is a promising technique for carcinogenic HPV detection.

Critical Pitting Temperature of 2205 Duplex Stainless Steels Using Immersion and Electrochemical Polarization Test Methods (침지시험법 및 전기화학적 분극법에 의한 2205 이상 스테인리스강의 임계공식온도 측정 비교)

  • Shin Jae-Ho;Lee Jae-Bong
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.1
    • /
    • pp.18-24
    • /
    • 2006
  • Although stainless steels have the excellent corrosion resistance by passive film, they are susceptible to pitting corrosion in the environment containing halogen elements such as chloride ions. The resistance to pitting corrosion can be evaluated by measuring the critical pitting temperature (CPT). CPT values can be obtained using immersion, potentiodynamic and potentiostatic polarization test methods. Results on duplex 2205 stainless steels showed that CPT values were measured as $50^{\circ}C,\;55^{\circ}C\;and\;61^{\circ}C$, respectively for immersion, potentiodynamic and potentiostatic polarization test methods, depending upon the different test methods, even though the difference between CPT values are not much.

Performance of Membrane Electrode Assembly for DMFC Prepared by Bar-Coating Method (Bar-Coating 방법으로 제조한 직접메탄올 연료전지 MEA의 성능)

  • Kang, Se-Goo;Park, Young-Chul;Kim, Sang-Kyung;Lim, Seong-Yop;Jung, Doo-Hwan;Jang, Jae-Hyuk;Peck, Dong-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2008
  • The key component of a direct methanol fuel cell (DMFC) is the membrane electrode assembly (MEA), which comprises a polymer electrolyte membrane and catalyst layers (anode and cathode electrode). Generally the catalyst layer is coated on the porous electrode supporter (e.g. carbon paper or cloth) using various coating methods such as brushing, decal transfer, spray coating and screen printing methods. However, these methods were disadvantageous in terms of the uniformity of catalyst layer thickness, catalyst loss, and coating time. In this work, we used bar-coating method which can prepare the catalyst layer with uniform thickness for MEA of DMFC. The surface and cross-section morphologies of the catalyst layers were observed by SEM. The performances and resistance of the MEAs were investigated through a single cell evaluation and impedance analyzer.

An Electrochemical Study on Corrosion Property of Repair Welding Part for Exhaust Valve (배기밸브 보수 용접부의 부식 특성에 관한 전기화학적 연구)

  • Moon, Kyung-Man;Lee, Kyu-Hwan;Cho, Hwang-Rae;Lee, Myung-Hoon;Kim, Yun-Hae;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.82-88
    • /
    • 2008
  • The diesel engine of the merchant ship has been aperated in severe environments more and more, because the temperature of the exhaust gas of a combustion chamber is getting higher and higher with increasing use of heavy oil of law quality, due to the significant increase in the price of oil in recent some years. As a result, the degree of wear and corrosion between exhaust valve and seat ring is more serious compared to other engine parts. Thus the repair welding of exhaust valve and seat ring is a unique method to prolong the life of the exhaust valve, from an economical point of view. In this study, the corrosion property of both weld metal and base metal was investigated using electrochemical methods such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram, and polarization resistance in 5% H2SO4 solution. The test specimen was a part of an exhaust valve stem being welded as the base metal, using various welding methods. In all cases, the corrosion resistance as well as hardness of the weld metal zone was superior to the base metal. In particular, plasma welding showed relatively good properties for both corrosion resistance and hardness, compared to other welding methods. In the case of DC SMAW (Shielded metal arc welding), corrosion resistance of the weld metal zone was better than that of the base metal, although its hardness was almost same as the base metal.

Electrochemical Evaluation of Corrosion Property of Welding Zone of 304 Stainless Steel (304 스테인리스강의 용접부위의 부식특성에 관한 전기화학적 평가)

  • Moon, Kyung-Man;Kim, Yun-Hae;Kim, Jong-Do;Lee, Myung-Hoon;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.58-63
    • /
    • 2009
  • Two kinds of welding methods are used for austenitic 304 stainless steel: laser welding and TIG welding. The difference in the corrosion characteristics of the welded zone between these two welding methods was investigated using electrochemical methods, such as corrosion potential measurements, polarization curves, cyclic voltammograms, etc. The Vickers hardnesses of all the welded zones (WM: Weld Metal, HAZ: Heat Affected Zone, BM: Base Metal) showed relatively higher values in the case of laser welding than for TIG welding. Furthermore, the corrosion current densities of all the welding zones showed lower values compared to TIG welding. In particular, the corrosion current density of the HAZ with TIG welding had the highest value of all the welding zones, which suggests that chromium depletion due to the formation of chromium carbide appears in the HAZ, which is in the range of the sensitization temperature. Thus, it can easily be corroded with a more active anode. Consequently, we found that the corrosion resistance of all of the welding zones for austenitic 304 stainless steel could apparently be improved by using Laser welding.

Computational Simulation on Power Prediction of Lithium Secondary Batteries by using Pulse-based Measurement Methods (펄스 측정법에 기반한 리튬이차전지 출력 측정에 관한 전산 모사)

  • Park, Joonam;Byun, Seoungwoo;Appiah, Williams Agyei;Han, Sekyung;Choi, Jin Hyeok;Ryou, Myung-Hyun;Lee, Yong Min
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.33-38
    • /
    • 2015
  • Energy storage systems (ESSs) have been utilized widely in the world to optimize the power operation system and to improve the power quality. As lithium secondary batteries are the main power supplier for ESSs, it is very important to predict its cycle and power degradation behavior. In particular, the power, one of the hardest electrochemical properties to measure, needs lots of resources such as time and facilities. Due to these difficulties, computer modelling of lithium secondary batteries is applied to predict the DC-IR and power value during charging and discharging as a function of state of charge (SOC) by using pulse-based measurement methods. Moreover, based on the hybrid pulse power characteristics (HPPC) and J-Pulse (JEVS D 713, Japan Electric Vehicle Association Standards) methods, their electrochemical properties are also compared and discussed.

Electrochemical Characteristics of Dental Implant in the Various Simulated Body Fluid and Artificial Saliva (다양한 유사체액과 인공타액에서 치과용 임플란트의 전기화학적 특성)

  • Kim, T.H.;Park, G.H.;Son, M.K.;Kim, W.G.;Jang, S.H.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.226-231
    • /
    • 2008
  • Titanium and its alloy have been widely used in dental implant and orthopedic prostheses. Electrochemical characteristics of dental implant in the various simulated body fluids have been researched by using electrochemical methods. Ti-6Al-4V alloy implant was used for corrosion test in 0.9% NaCl, artificial saliva and simulated body fluids. The surface morphology was observed using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The electrochemical stability was investigated using potentiosat (EG&G Co, 263A). The corrosion surface was observed using scanning electron microscopy (SEM). From the results of potentiodynamic test in various solution, the current density of implant tested in SBF and AS solution was lower than that of implant tested in 0.9% NaCl solution. From the results of passive film stability test, the variation of current density at constant 250 mV showed the consistent with time in the case of implant tested in SBF and AS solution, whereas, the current density at constant 250mV in the case of implant tested in 0.9% NaCl solution showed higher compared to SBF and AS solution as time increased. From the results of cyclic potentiodynamic test, the pitting potential and |$E_{pit}\;-\;E_{corr}$| of implant tested in SBF and AS solution were higher than those of implant tested in 0.9% NaCl solution.

IMPROVEMENT EFFECTS OF ELECTROCHEMICAL STABILITY OF MAGNETIC MATERIALS FOR PROSTHETIC DENTISTRY (치과보철용 자석재료의 전기화학적 안정성 개선효과)

  • Kwack, Jong-Ha;Oh, Sang-Ho;Choe, Han-Cheol;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.628-641
    • /
    • 2006
  • Statement of problem: Dental magnetic materials have been applied to removable prosthetic appliances, maxillofacial prostheses, obturator and dental implant but they still have some problems such as low corrosion resistance in oral environments. Purpose: To increase the corrosion resistance of dental magnetic materials, surfaces of Sm-Co and Nd-Fe-B based magnetic materials were plated with TiN and sealed with stainless steels. Materials and methods : Surfaces of Sm-Co and Nd-Fe-B based magnetic materials were plated with TiN and sealed with stainless steels, and then three kinds of electrochemical corrosion test were performed in 0.9% NaCl solution; potentiodynamic, potentiostatic, and electrochemical impedance test. From this study, corrosion behavior, amount of elements released, mean average surface roughness values, the changing of retention force, and magnetic force values were measured comparing with control group of non-coated magnetic materials. Results: The values of surface roughness of TiN coated Sm-Co and TiN coated Nd-Fe-B based magnetic materials were lower than those of non coated Sm-Co and Nd-Fe-B alloy. From results of potentiodynamic test, the passive current density of TiN coated Sm-Co alloy were smaller than those of TiN coated Nd-Fe-B alloy and non coated alloys in 0.9% NaCl solution. From results of potentiostatic and electrochemical impedance test, the surface stability of the TiN coated Sm-Co alloy was more drastically increased than that of the TiN coated Nd-Fe-B alloy and non-coated alloy. The retention and magnetic force after and before corrosion test did not change in the case of TiN coated magnetic alloy sealed with stainless steel. Conclusion: It is considered that the corrosion problem and improvement for surface stability of dental magnetic materials could be solved by ion plating with TiN on the surface of dental magnetic materials and by sealing with stainless steels.