References
- Cho, J., Jeong, S. & Kim, Y., "Commercial and research battery technologies for electrical energy storage applications," Progress in Energy and Combustion Science, 48, pp.84-101, June, 2015.
- Hongjae Myung., "Consideration for Technical Trend of Large Scale BESS PCS," Power Electronics Annual Conference, The Korean Institute of Power Electronics, Koera, yesan, 2011, pp.273-272
- Geon-Pyo Lim, Hyun-Gyu Han, Byung-Hoon Chang, Seung-Kwon Yang, Yong-Beum Yoon, "Demonstration to Operate and Control Frequency Regulation of Power System by 4MW Energy Storeage System," The Transactions of the Korean Institute of Electrical Engineers P, 2014, pp.169-177
- Divya, K. & O stergaard, J., "Battery energy storage technology for power systems An overview," Electric Power Systems Research, 79, pp.511-520, September, 2009. https://doi.org/10.1016/j.epsr.2008.09.017
- Poullikkas, A. "A comparative overview of large-scale battery systems for electricity storage," Renewable and Sustainable Energy Reviews, 27, pp.778-788, July, 2013. https://doi.org/10.1016/j.rser.2013.07.017
- Doyle, M., Fuller, T. F. & Newman, J., "Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell," Journal of the Electro chemical Society, 140, pp.1526-1533, January, 1993. https://doi.org/10.1149/1.2221597
- Doyle, M., Newman, J., Gozdz, A. S., Schmutz, C. N. & Tarascon, J. M., "Comparison of modeling predictions with experimental data from plastic lithium ion cells," Journal of the Electrochemical Society, 143, pp.1890-1903, June, 1996. https://doi.org/10.1149/1.1836921
- Mao, J., Tiedemann, W. & Newman, J., "Simulation of temperature rise in Li-ion cells at very high currents," Journal of Power Sources, 271, pp.444-454, August, 2014. https://doi.org/10.1016/j.jpowsour.2014.08.033
- Hyewon Lee & Yong Min Lee., "Principles and Comparative Studies of Various Power Measurement Methods for Lithium Secondary Batteries ," Journal of the Korean Electrochemical Society, 10(3), pp.115-123, August, 2012.
- Younghoon Kim, Songhun Yoon, "Electrochemical Characterization Methods for Lithium Secondary Batteries,"Polymer Science and Technology, 23(3), pp.307-312, June, 2012.
- Sukbeom You, Joosik Jung, Kyeong-Beom Cheong and Jooyoung Go., "Numerical Simulation of Lithium-Ion Batteries for Electic Vehicles," 'Journal of Mechanical Science and Technology B, 35(6), pp.649-656, March, 2011.
- Dae-Hyun Lee & Do-young Yoon., "Computational Modeling of Charge-Discharge Characteristics of Lithium-Ion Batteries," Journal of Energy Engineering, 20(4), pp.278-285, November, 2011. https://doi.org/10.5855/ENERGY.2011.20.4.278
- Wang, C.-W. & Sastry, A. M., "Mesoscale modeling of a Li-ion polymer cell," Journal of The Electrochemical Society, 154(11), A1035-A1047, August, 2007. https://doi.org/10.1149/1.2778285
- Vyroubal, P., Maxa, J., Kazda, T. & Vondrak, J., "The Finite Element Method in Electrochemistry Modelling of the Lithium-Ion Battery," ECS Transactions, Journal of Power Sorces, U.S. San Francisco, 2014, 48, pp.289-296 https://doi.org/10.1149/04801.0289ecst
- Xu, M., Zhang, Z., Wang, X., Jia, L. & Yang, L., "A pseudo three-dimensional electrochemical-thermal model of a prismatic LiFePO 4 battery during discharge process," Energy, 80, pp.303-317, February, 2015. https://doi.org/10.1016/j.energy.2014.11.073
Cited by
- Elucidating the Polymeric Binder Distribution within Lithium-Ion Battery Electrodes Using SAICAS vol.19, pp.13, 2018, https://doi.org/10.1002/cphc.201800072