• Title/Summary/Keyword: electro-generation

Search Result 237, Processing Time 0.053 seconds

Modeling of Practical Photovoltaic Generation System using Controllable Current Source based Inverter (제어 가능한 전류원 기반의 인버터를 이용한 실제적 태양광 발전 시스템 모델링)

  • Oh, Yun-Sik;Cho, Kyu-Jung;Kim, Min-Sung;Kim, Ji-Soo;Kang, Sung-Bum;Kim, Chul-Hwan;Lee, You-Jin;Ko, Yun-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1340-1346
    • /
    • 2016
  • Utilization of Distributed Generations (DGs) using Renewable Energy Sources (RESs) has been constantly increasing as they provide a lot of environmental, economic merits. In spite of these merits, some problems with respect to voltage profile, protection and its coordination system due to reverse power flow could happen. In order to analyze and solve the problems, accurate modeling of DG systems should be preceded as a fundamental research task. In this paper, we present a PhotoVoltaic (PV) generation system which consists of practical PV cells with series and parallel resistor and an inverter for interconnection with a main distribution system. The inverter is based on controllable current source which is capable of controlling power factors, active and reactive powers within a certain limit related to amount of PV generation. To verify performance of the model, a distribution system based on actual data is modeled by using ElectroMagnetic Transient Program (EMTP) software. Computer simulations according to various conditions are also performed and it is shown from simulation results that the model presented is very effective to study DG-related researches.

Fabrication of Fabric-based Wearable Devices with High Adhesion Properties using Electroplating Process (전해 도금을 이용한 높은 접착 특성을 갖는 섬유 기반 웨어러블 디바이스 제작)

  • Kim, Hyung Gu;Rho, Ho Kyun;Cha, Anna;Lee, Min Jung;Park, Jun-beom;Jeong, Tak;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.55-60
    • /
    • 2021
  • In order to produce wearable displays with high adhesion while maintaining flexible characteristics, the adhesive method using electro plating method was carried out. Laser lift-off (LLO) transcription was also used to remove sapphire substrates from LEDs bonded to fibers. Afterwards, the SEM and EDS data of the sample, which conducted the adhesion method using electro plating, confirmed that copper actually grows through the lattice of the fiber fabric to secure the light source and fiber. The adhesion characteristics of copper were checked using Universal testing machine (UTM). After plating adhesion, the characteristics of the LLO transcription process completed and the LED without the transcription process were compared using probe station. The electroluminescence (EL) according to the enhanced current was measured to check the characteristics of the light source after the process. As the current increases, the temperature rises and the bandgap decreases, so it was confirmed that the spectrum shifted. In addition, the change in the electrical characteristics of the samples according to the radius change is confirmed using probe station. The radius strain also had mechanical strength that copper could withstand bending stress, so the Vf variation was measured below 6%. Based on these results, it is expected that it will be applied to batteries, catalysts, and solar cells that require flexibility as well as wearable displays, contributing to the development of wearable devices.

A wireless guided wave excitation technique based on laser and optoelectronics

  • Park, Hyun-Jun;Sohn, Hoon;Yun, Chung-Bang;Chung, Joseph;Kwon, Il-Bum
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.749-765
    • /
    • 2010
  • There are on-going efforts to utilize guided waves for structural damage detection. Active sensing devices such as lead zirconate titanate (PZT) have been widely used for guided wave generation and sensing. In addition, there has been increasing interest in adopting wireless sensing to structural health monitoring (SHM) applications. One of major challenges in wireless SHM is to secure power necessary to operate the wireless sensors. However, because active sensing devices demand relatively high electric power compared to conventional passive sensors such as accelerometers and strain gauges, existing battery technologies may not be suitable for long-term operation of the active sensing devices. To tackle this problem, a new wireless power transmission paradigm has been developed in this study. The proposed technique wirelessly transmits power necessary for PZT-based guided wave generation using laser and optoelectronic devices. First, a desired waveform is generated and the intensity of the laser source is modulated accordingly using an electro-optic modulator (EOM). Next, the modulated laser is wirelessly transmitted to a photodiode connected to a PZT. Then, the photodiode converts the transmitted light into an electric signal and excites the PZT to generate guided waves on the structure where the PZT is attached to. Finally, the corresponding response from the sensing PZT is measured. The feasibility of the proposed method for wireless guided wave generation has been experimentally demonstrated.

Zn3(PO4)2 Protective Layer on Zn Anode for Improved Electro-chemical Properties in Aqueous Zn-ion Batteries

  • Chae-won Kim;Junghee Choi;Jin-Hyeok Choi;Ji-Youn Seo;Gumjae Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.162-173
    • /
    • 2023
  • Aqueous zinc-ion batteries are considered as promising alternatives to lithium-ion batteries for energy storage owing to their safety and cost efficiency. However, their lifespan is limited by the irreversibility of Zn anodes because of Zn dendrite growth and side reactions such as the hydrogen evolution reaction and corrosion during cycling. Herein, we present a strategy to restrict direct contact between the Zn anode and aqueous electrolyte by fabricating a protective layer on the surface of Zn foil via phosphidation method. The Zn3(PO4)2 protective layer effectively suppresses Zn dendrite growth and side reactions in aqueous electrolytes. The electrochemical properties of the Zn3(PO4)2@Zn anode, such as the overpotential, linear polarization resistance, and hydrogen generation reaction, indicate that the protective layer can suppress interfacial corrosion and improve the electrochemical stability compared to that of bare Zn by preventing direct contact between the electrolyte and the active sites of Zn. Remarkably, MnO2 Zn3(PO4)2@Zn exhibited enhanced reversibility owing to the formation a stable porous layer, which effectively inhibited vertical dendrite growth by inducing the uniform plating of Zn2+ ions underneath the formed layer.

A Study on ER Suspension System with Energy Generation (재생 에너지를 특징으로하는 ER현가장치 연구)

  • 김기선;김승환
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.71-78
    • /
    • 1999
  • This paper presents a new type of energy generative ER suspension system which does not require external power sources. This is accomplished by converting vibration energy(kinetic energy) into electrical energy. In order to undertake this, an appropriate size of the ER damper is manufactured by incorporation a mechanism which changes the linear motion of the ER damper to the rotary motion. This rotary motion is amplified by gears and activates a generator to produce the electrical energy. The efficiency of energy generation is evaluated and the level of damping force with generated power is also investigated. Then, the ER suspension system is applied to the quarter car model, and its vibration isolation is experimentally evaluated with respect to the piston speed.

  • PDF

Analysis of characteristics of discharge in liquid

  • Kim, Ju-Sung;Min, Boo-Ki;Hong, Young-June;Kang, Seong-Oun;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.209.2-209.2
    • /
    • 2016
  • Up to now, Plasma applications are thought as a leading technology in industrial, chemical and even medical and biological field. Especially, Due to direct discharge in liquid with reaction in ambient solution, plasma in liquid is useful plasma technology. Such as electro-surgery, water purification, radical generation for synthesis. For using those plasma applications efficiently, plasma characteristics should be understood in advance. But discharge in liquid is not much well-known about its characteristics. And plasma discharge in solution is difficult to generate and analysis due to electrolysis, vaporization and radical generation. So, We make stable plasma discharge in solution(saline 0.9%) without input gas. We also analyze new type of plasma source in thermal and electrochemical view. And we check characteristics of plasma in liquid. For example, plasma density and radical density(OH) with optical emission, thermal energy with thermometer, electrical energy with oscilloscope and so on. And we try to explain the bubble and plasma formation with circuit analysis.

  • PDF

Experimental Studies on Comparison of Stress Corrosion Cracking Generation Due to Pipe Material Degradation in the Primary Stage of the Nuclear Power Plant (원전 1차 측 배관재질의 열화에 따른 응력부식균열 발생 비교 실험 연구)

  • Park, Kwang-Jin;Lee, Gyu-Young;Bae, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.108-113
    • /
    • 2007
  • In this report, stress corrosion cracking generation due to pipe material degradation in the primary stage of the nuclear power plant was investigated. Firstly, after artificially degrading the CF8A steel during 2, 4, and 6 months in actual temperature, $400^{\circ}C,$ assessed corrosion susceptibility of the degraded material following ASTM G5 standard. And next, the S.C.C. tests for the degraded material were conducted under the condition of $60^{\circ}C,$ 2wt.% H2BO3+Li70H solution, 0.8 oy. From the results, Corrosion rates linearly increased with degradation period and solution temperature increase. And both the raw material and the degraded materials were not failed in the S.C.C. test condition. In spite of long time test (about 3,900 hrs) under S.C.C. condition, surface pits or surface corrosion by the electro chemical reaction were not observed. And also, even though the nondestructive DCPD and ACPD methods were applied to on-line monitor the S.C.C. failure processes it was impossible because the surface pits and cracks were not generated.

  • PDF

A Study on Islandig Characteristics using Phase Angle Adjustment of Distributed Generation (배전계통연계 분산전원의 위상변화에 따른 고립운전 파라미터 특성)

  • Bang, Ji-Yoon;Kim, Hak-Man;Lee, Bock-Ku;Sim, Jae-Sun;Shin, Myong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.525-526
    • /
    • 2006
  • Recently, much research has been done and many improvements have been developed for islanding protection of distributed generation(DG). Anti-islanding protection for DG must be act very quickly to prevent equipment damage at the time of disconnection and for the safety of maintenance and repair personnel. DG-based detection methods have included both passive and active types, and now research has shifted towards new anti-islanding detection methods that make up for the defects of the previous types. Because differences occur between the utility grid and the DG when connecting and disconnecting depending on the phase difference, voltage, current, relative capacity of electric power, and system operation characteristics, voltage phase angle is an important consideration. In this paper, we simulated islanded operation characteristics comparing phase difference of DG and the connected utility grid, and analyzed various parameters (real power, reactive power, RMS voltage, RMS current, power factor angle, and frequency) by varying the DG's voltage phase angle. Using this information, we propose a suitable DG voltage phase angle for enhanced passive islanding detection techniques.

  • PDF

The Combustion Character of Polymer Modified Cement Mortar (폴리머 시멘트 모르타르의 연소특성 평가)

  • Park, Dong-Cheon;Oh, Kwang-Suek;Kim, Hyo-Youl;Oh, Sang-Gyun;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.63-66
    • /
    • 2008
  • Not only mechanical properties, bonding properties, electro chemical properties, etc. but also fire safety is required in patch repair materials such as polymer modified cement mortar (PCM) which are used to deteriorated reinforced concrete structure. Unfortunately, it is very difficult to choice the appropriate repair materials because there are not enough information about fire safety properties of PCM. In this study, The combustion characters of PCM were evaluated through the heat release rate test and non-combustibility test. The pyrogenicity test uses the cone calorimeter based on the oxygen consumption method. The non-combustibility test is from the temperature change inside the furnace during the test. The effect of the types of polymer and polymer content were evaluated from the series of test. The results are like followings. 1) The higher the W/C of PCM, the lower the gross calorific value and heat generation rate in the heat release rate test. The amount of heat generation of PCM is like the order of VVA, EVA, and SBR in this study. 2) Some materials such as E45-100, E50-100, E60-100, S50-50, and S50-100 were estimated as not appropriate building materials in the non combustibility test.

  • PDF

The Comparative Study of Different Membranes for Electrolytic Cell for the Hydrogen Peroxide Generation (과산화수소 발생을 위한 전해셀용 양성자 교환 막의 비교)

  • You, Sun-Kyung;Kim, Han-Joo;Kim, Tae-Il;Tsurtsumia, Gigla;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.235-238
    • /
    • 2007
  • There is great interest in the applicability of generated hydrogen peroxide to a variety of industrial processes, usually involving oxidation of organics. Hydrogen peroxide is now employed for the bleaching as well as mechanical and chemical treatment in the pulp and paper industries. It addition, it is considered as an agent to displace the traditional alkaline treatments with chlorine-based chemicals. This paper reports a comparative study of $H_2O_2$ electogeneration on gas-diffusion electrode in divided cell with several $Nafion^{(R)}$ proton-exchange membranes, Russian cation-exchange membrane MK-40 and SPEEK membrane. The influence of different PEMs on electro-chemical cell voltage, current efficiency and energy consumption of hydrogen peroxide generation has been studied.