• Title/Summary/Keyword: electro-discharge machining (EDM)

Search Result 43, Processing Time 0.023 seconds

Effect of Ultrasonic Vibration on Micro-EDM Channel (Micro-EDM 채널가공에서 초음파 가진의 영향)

  • Lim, Heesung;Hong, Minsung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.421-425
    • /
    • 2016
  • Micro-EDM is one of the recent fine-machining technologies. Micro-EDM is widely used in precision processes because products manufactured via EDM are free from workpiece hardness. However, the debris produced during the process cause many problems such as reduced precision of the process. The first solution of this problem involves using the milling hole process. Micro-EDM hole process involves an electrode moving rapidly in the vertical direction via a servo system to disperse debris. However, this process can cause reduced work efficiency owing to contact between the electrode and workpiece. In this study, ultrasonic vibration is added to micro-EDM channel machining. Ultrasonic vibration removes the debris during machining and enables precision machining. Consequently, a clean work environment for the subsequent processes is maintained.

A Study of Abrasive Flow Machining on EDMed Surfacs of Tool Steel (방전가공된 공구강표면의 연마재 유동가공에 관한 연구)

  • 최재찬;김창호;허관도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.8-13
    • /
    • 1996
  • A relatively new non-traditional finishing process called Abrasive Flow Machining(AFM) is being used to deburr, polish and radius workpiece or produce compressive residual stresses by flowing an abrasive-laden viscoelastic compound across the surface to be machined. This paper presents the effects of AFM on surfaces of tool steel produced by EDM and W-EDM. Using AFM, white layer produced by EDM is erased almost equally and the amount of metal removal is significantly affected the initally machined surface condition of workpiece. The dimension of workiece is enlarged and its surface roughness is improved as AFM time is increased. The optimal AFM time can be established from the experimental results. It is considered that the grinding method lide AFM is useful to grind complex or slim geometry of workpiece even. Scanning Electron Microscopy(SEM) was used to study the surface characteristics of the workpiece before and after AFM.

  • PDF

Fabrication of 3-D Micro Structure and Micro Tool Using MEDM (미세 방전을 이용한 3차원 미세 구조물 제작 및 미세 공구 제작)

  • Lee Y. S.;Kim B. H.;Yi S. M.;Chu C. N.;Kang Y. H.;Choi T. H.;Park H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.11a
    • /
    • pp.255-259
    • /
    • 2004
  • 3-D micro structures and micro tools are fabricated using MEDM (Micro Electric Discharge Machining). To make micro structures, micro electro discharge milling process is applied. During micro electro discharge milling, electrode (tool) wears both axial and radial direction. To compensate tool wear which influences significantly machining accuracy, overlap machining path is proposed. Machining characteristics of micro electro discharge milling is investigated in considering of depth of cut and capacitance of discharge circuit. Micro complex shaped tools are fabricated using REDM (reverse electro discharge machining). Sacrificial electrode is machined through electro discharge milling process and is used as electrode to make micro tools. Using this process several micro tools shape of 'ㄷ', 'ㅁ' and 'o' are fabricated. With these complex shaped tools, micro machining is successfully applied repeatedly.

  • PDF

Electrical Discharge Machining of Alumina Ceramic Matrix Composites Containing Electro-conductive Titanium Carbide as a Second Phase (도전성 탄화티타늄 이차상을 포함하는 산화알루니늄기 세라믹 복합체의 방전가공)

  • 윤존도;왕덕현;안영철;고철호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1092-1098
    • /
    • 1997
  • Electrical discharge machining (EDM) was attempted on a ceramic matrix composite containing non-conductive alumina as a matrix and conductive titania as a second phase, and was found successful. As the current or duty factor increased, the material removal rate (MRR) increased and the surface roughness also increased. The EDMed surface was covered with a number of craters of a circular shape having 100-200 microns of diameter. The melting and evaporation was suggested for the EDM mechanism. The bending strength decreased 44% after EDM, but the Weibull modulus increased more than twice. Combination of EDM and barre이 polishing resulted in the maintenance of the bending strength level. Temperature distribution near a spark in the sample was computer-simulated by use of finite element method, and was found to have similar shape to the one which the observed craters have.

  • PDF

Micro/Meso-scale Shapes Machining by Micro EDM Process

  • Kim Young-Tae;Park Sung-Jun;Lee Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.5-11
    • /
    • 2005
  • Among the micro machining techniques, micro EDM is generally used for machining micro holes, pockets, and micro structures on difficult-cut-materials. Micro EDM parameters such as applied voltage, capacitance, peak current, pulse width, duration time are very important to fabricate the tool electrode and produce the micro structures. Developed micro EDM machine is composed of a 3-axis driving system and RC circuit equipped with pulse generator. In this paper, using micro EDM machine, the characteristics of micro EDM process are investigated and it is applied to micro holes, slots, and pockets machining. Through experiments, relations between machined surface and voltages and between MRR and feedrate are investigated. Also the trends of tool wear are investigated in case of hole and slot machining.

A Study on the Micro Pattern Fabrication of Lab-on-a-chip Mold Master using Micro EDM (Micro EDM을 이용한 Lab-on-a-chip금형의 미세 패턴 제작에 관한 연구)

  • Shin, B.C.;Kim, K.B.;Cho, M.W.;Kim, B.H.;Jung, W.C.;Heo, Y.M.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Recently, analyzing system is studying for applying to biomedical engineering field, actively. Micro fluidics control system has been manufactured using LIGA (Lithographie Galvanoformung und Abformung), Etching, Lithography and Laser etc. However, it is difficult that above-mentioned methods are applied to fabrication of precision mold master efficiently because of long processing time and rising cost of equipments. Therefore, in this study, micro EDM and micro WEDG system were developed to analyze machining characteristics with tool wear, surface roughness and process time. Then, optimal machining conditions could be obtained from the results of analysis. As the results, mold master of staggered herringbone mixer which has a high mixing efficiency, one of passive mixer of Lab-on-a-chip, could be fabricated from micro pattern(< 50um) using micro EDM successfully.

Machining characteristics on ultrasonic vibration assisted micro-electrical discharge machining of carbon-nanotube reinforced conductive Al2O3 composite (전도성을 가지는 탄소나노튜브강화 알루미나복합소재의 마이크로방전가공에서 초음파진동 부가에 의한 가공특성)

  • Kang, Myung-Chang;Tak, Hyun-Seok;Lee, Chang-Hoon;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.119-126
    • /
    • 2014
  • Micro-holes of conductive ceramic are required in micro structures. Micro-electrical discharge machining (Micro-EDM) is an effective machining method since EDM is as process for shaping hard metals and complex-shaped holes by spark erosion in all kinds of electro-conductive materials. However, as the depth of micro hole increases, the machining condition becomes more unstable due to inefficient removal of debris between the electrode and the workpiece. In this paper, micro-EDM was performed to evaluate machining characteristic such as electrode wear, machining time, taper angle, radial clearance with varying voltage and ultrasonic vibration on 10 vol.% Carbon-nanotube reinforced conductive $Al_2O_3$ composite fabricated by spark plasma sintering in previous research.

Improvements of Electro Discharge Machining Process using Side Flushing Devices (방전가공시 측면 플러싱 장치를 활용한 가공성 향상)

  • Maeng Hee-young;Park Keun;Shin Seung-hwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.23-31
    • /
    • 2006
  • The present works concerns a side flushing device for the improvement of the conventional Electric-Discharge Machining(EDM) process. In the EDM process, chips are usually generated as the workpiece is removed, and deposited between the electrode and the workpiece. This sediment degrades the surface finish of the machined product as well as the processing efficiency. In the present study, a flushing device with additional side injection equipments is proposed in order to remove the deposited chips effectively. Through numerical simulations, the validity of the proposed device is verified, and the influence of process parameters is investigated. Experiments have been also carried out in the die sinking EDM process. It was observed that the process efficiency and the surface finish are improved by virtue of the proposed flushing device.

Real-Time Prediction of Electrode Wear for the Small Hole Pass-Through by EDM-drill (방전 드릴을 이용한 미세 홀 관통 공정의 전극 소모량 실시간 예측)

  • Choi, Yong-Chan;Huh, Eun-Young;Kim, Jong-Min;Lee, Cheol-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.268-274
    • /
    • 2013
  • Electric discharge machining drill (EDM-drill) is an efficient process for the fabrication of micro-diameter deep metal hole. As there is non-physical contact between tool (electrode) and workpiece, EDM-drill is widely used to machine the hard machining materials such as high strength steel, cemented carbide, titanium alloys. The electro-thermal energy forces the electrode to wear out together with the workpiece to be machined. The electrode wear occurs inside of a machining hole. and It causes hard to monitor the machining state, which leads the productivity and the quality to decrease. Thus, this study presents a methodology to estimated the electrode wear amount while two coefficients (scale factor and shape factor) of the logarithmic regression model are evaluated from the experiment result. To increase the accuracy of estimation model, the linear transformation method is adopted using the differences of initial electrode wear differences. The estimation model is verified through experiment. The experimental result shows that within minute error, the estimation model is able to predict accurately.

A Comparative Study of Transistor and RC Pulse Generators for Micro-EDM of Tungsten Carbide

  • Jahan, Muhammad Pervej;Wong, Yoke San;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.3-10
    • /
    • 2008
  • Micro-electrical discharge machining (micro-EDM) is an effective method for machining all types of conductive materials regardless of hardness. Since micro-EDM is an electro-thermal process, the energy supplied by the pulse generator is an important factor in determining the effectiveness of the process. In this study, an investigation was conducted on the micro-EDM of tungsten carbide (WC) to compare the performance of transistor and resistance/capacitance (RC) pulse generators in obtaining the best quality micro-hole. The performance was measured by the machining time, material removal rate, relative tool wear ratio, surface quality, and dimensional accuracy. The RC generator was more suited for minimizing the pulse energy, which is a requirement for fabricating micro-parts. The smaller-sized debris formed by the low-discharge energy of RC micro-EDM could be easily flushed away from the machined zone, resulting in a surface free of burrs and resolidified molten metal. The RC generator also required much less time to obtain the same quality micro-hole in WC. Therefore, RC generators are better suited for fabricating micro-structures, producing good surface quality and better dimensional accuracy than the transistor generators, despite their higher relative tool wear ratio.