• Title/Summary/Keyword: electrification

Search Result 235, Processing Time 0.027 seconds

Study on the Railway Fault Locator Impedance Prediction Method using Field Synchronized Power Measured Data (실측 동기화 데이터를 활용한 교류전기철도의 고장점표정장치 임피던스 예측기법 연구)

  • Jeon, Yong-Joo;Kim, Jae-chul
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.595-601
    • /
    • 2017
  • Due to the electrification of railways, fault at the traction line is increasing year by year. So importance of the fault locator is growing higher. Nevertheless at the field traction line, it is difficult to locate accurate fault point due to various conditions. In this paper railway feeding system current loop equation was simplified and generalized though measured data. And substation, train power data were measured under synchronized condition. Finally catenary impedance was predicted through generalized equation. Also simulation model was designed to figure out the effect of load current for train at same location. Train current was changed from min to max range and catenary impedance was compared at same location. Finally, power measurement was performed in the field at train and substation simultaneously and catenary system impedance was predicted and calculated. Through this method catenary impedance can be measured more easily and continuously compared to the past method.

Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.641-651
    • /
    • 2019
  • The stochastic stability control of the parameter-excited vibration of an inclined stay cable with multiple modes coupling under random and periodic combined support disturbances is studied by using the direct eigenvalue analysis approach based on the response moment stability, Floquet theorem, Fourier series and matrix eigenvalue analysis. The differential equation with time-varying parameters for the transverse vibration of the inclined cable with control under random and deterministic support disturbances is derived and converted into the randomly and deterministically parameter-excited multi-degree-of-freedom vibration equations. As the stochastic stability of the parameter-excited vibration is mainly determined by the characteristics of perturbation moment, the differential equation with only deterministic parameters for the perturbation second moment is derived based on the $It{\hat{o}}$ stochastic differential rule. The stochastically and deterministically parameter-excited vibration stability is then determined by the deterministic parameter-varying response moment stability. Based on the Floquet theorem, expanding the periodic parameters of the perturbation moment equation and the periodic component of the characteristic perturbation moment expression into the Fourier series yields the eigenvalue equation which determines the perturbation moment behavior. Thus the stochastic stability of the parameter-excited cable vibration under the random and periodic combined support disturbances is determined directly by the matrix eigenvalues. The direct eigenvalue analysis approach is applicable to the stochastic stability of the control cable with multiple modes coupling under various periodic and/or random support disturbances. Numerical results illustrate that the multiple cable modes need to be considered for the stochastic stability of the parameter-excited cable vibration under the random and periodic support disturbances, and the increase of the control damping rather than control stiffness can greatly enhance the stochastic stability of the parameter-excited cable vibration including the frequency width increase of the periodic disturbance and the critical value increase of the random disturbance amplitude.

A Study on the Certification System for eVTOL Aircraft (전기추진 수직이착륙 항공기 인증제도에 대한 고찰)

  • Lim, Daejin;Yee, Kwanjung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.20-29
    • /
    • 2021
  • As the feasibility of urban air mobility (UAM) service using electric vertical take-off and landing (eVTOL) aircraft increases due to aircraft electrification, distributed propulsion, and artificial intelligence technologies, the U.S. and European aeronautical societies have been improving their certification system and regulations for the type certification of eVTOL. The improved certification system is expected to be ready in the near future, after the European Union Aviation Safety Agency (EASA) proposed the VTOL Special Condition, SC-VTOL in 2019. However, the current domestic certification system is still insufficient to properly respond to eVTOL. This study investigated the development trends of foreign eVTOL and certification systems, identified considerations to improve the domestic certification system, and proposed the measures for type certificates and type certificates validation of eVTOL based on the comparison between SC-VTOL and Korea airworthiness standards (KAS).

ESTABLISHMENT OF CDM PROJECT ADDITIONALITY THROUGH ECONOMIC INDICATORS

  • Kai. Li.;Robert Tiong L. K.;Maria Balatbat ;David Carmichael
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.272-275
    • /
    • 2009
  • Carbon finance is the investment in Greenhouse Gas (GHG) emission reduction projects in developing countries and countries with economies in transition within the framework of the Kyoto Protocol's Clean Development Mechanism (CDM) or Joint Implementation (JI) and with creation of financial instruments, i.e., carbon credits, which are tradable in carbon market. The additional revenue generated from carbon credits will increase the bankability of projects by reducing the risks of commercial lending or grant finance. Meantime, it has also demonstrated numerous opportunities for collaborating across sectors, and has served as a catalyst in bringing climate issues to bear in projects relating to rural electrification, renewable energy, energy efficiency, urban infrastructure, waste management, pollution abatement, forestry, and water resource management. Establishing additionality is essential for successful CDM project development. One of the key steps is the investment analysis. As guided by UNFCCC, financial indicators such as IRR, NPV, DSCR etc are most commonly used in both Option II & Option III. However, economic indicator such as Economic Internal Rate of Return(EIRR) are often overlooked in Option III even it might be more suitable for the project. This could be due to the difficulties in economic analysis. Although Asian Development Bank(ADB) has given guidelines in evaluating EIRR, there are still large amount of works have to be carried out in estimating the economic, financial, social and environmental benefits in the host country. This paper will present a case study of a CDM development of a 18 MW hydro power plant with carbon finance option in central Vietnam. The estimation of respective factors in EIRR, such as Willingness to Pay(WTP), shadow price etc, will be addressed with the adjustment to Vietnam local provincial factors. The significance of carbon finance to Vietnam renewable energy development will also be addressed.

  • PDF

Techno-economic Analysis on the Present and Future of Secondary Battery Market for Electric Vehicles and ESS (전기차와 ESS용 이차전지 시장의 현재와 미래에 대한 기술경제적 분석)

  • Jung Seung Lee;Soo Kyung Kim
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Interest in the future of the battery market is growing as Tesla announces plans to increase production of electric vehicles and to produce batteries. Tesla announced an action plan to reduce battery prices by 56% through 'Battery Day', which included expansion of factories to internalize batteries and improvement of materials and production technology. In the trend of automobile electrification, the expansion of the battery market, which accounts for 40% of the cost of electric vehicles, is inevitable, and the size of the electric vehicle battery market in 2026 is expected to increase more than five times compared to 2016. With the development of materials and process technology, the energy density of electric vehicle batteries is increasing while the price is decreasing. Soon, electric vehicles and internal combustion locomotives are expected to compete on the same line. Recently, the mileage of electric vehicles is approaching that of an internal combustion locomotive due to the installation of high-capacity batteries. In the EV battery market, Korean, Chinese and Japanese companies are fiercely competing. Based on market share in the first half of 2020, LG Chem, CATL, and Panasonic are leading the EV battery supply, and the top 10 companies included 3 Korean companies, 5 Chinese companies, and 2 Japanese companies. All-solid, lithium-sulfur, sodium-ion, and lithium air batteries are being discussed as the next-generation batteries after lithium-ion, among which all-solid-state batteries are the most active. All-solid-state batteries can dramatically improve stability and charging speed by using a solid electrolyte, and are excellent in terms of technology readiness level (TRL) among various technology alternatives. In order to increase the competitiveness of the battery industry in the future, efforts to increase the productivity and economy of electric vehicle batteries are also required along with the development of next-generation battery technology.

LED Chromaticity-Based Indoor Position Recognition System for Autonomous Driving (자율 주행을 위한 LED 색도 기반 실내 위치 인식 시스템)

  • Jo, So-hyeon;Woo, Joo;Byun, Gi-sig;Jeong, Jae-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.603-605
    • /
    • 2021
  • With the expansion of the indoor service-providing robot market and the electrification of automobiles, research on autonomous driving is being actively conducted. In general, in the case of outside, the location is mainly recognized through GPS, and location positioning is performed indoors using technologies such as WiFi, UWB (Ultra-Wide Band), VLP, LiDAR, and Vision. In this paper, we introduce a system for location-positioning using LED lights with different color temperatures in an indoor environment. After installing LED lights in a simulated environment such as a tunnel, it was shown that information about the current location can be obtained through the analysis of chromaticity values according to location. Through this, it is expected to be able to obtain information about the location of the vehicle in the tunnel and the movement of the device in a room such as a warehouse or a factory.

  • PDF

Kinematic Design of High-Efficient Rotational Triboelectric Nanogenerator (고효율 회전형 정전 나노 발전기의 기구학적 설계)

  • Jihyun Lee;Seongmin Na;Dukhyun Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.106-111
    • /
    • 2024
  • A triboelectric nanogenerator is a promising energy harvester operated by the combined mechanism of electrostatic induction and contact electrification. It has attracting attention as eco-friendly and sustainable energy generators by harvesting wasting mechanical energies. However, the power generated in the natural environment is accompanied by low frequencies, so that the output power under such input conditions is normally insufficient amount for a variety of industrial applications. In this study, we introduce a non-contact rotational triboelectric nanogenerator using pedaling and gear systems (called by P-TENG), which has a mechanism that produces high power by using rack gear and pinion gear when a large force by a pedal is given. We design the system can rotate the shaft to which the rotor is connected through the conversion of vertical motion to rotational motion between the rack gear and the pinion gear. Furthermore, the system controls the one directional rotation due to the engagement rotation of the two pinion gears and the one-way needle roller bearing. The TENG with a 2 mm gap between the rotor and the stator produces about the power of 200 ㎼ and turns on 82 LEDs under the condition of 800 rpm. We expect that P-TENG can be used in a variety of applications such as operating portable electronics or sterilizing contaminated water.

Stress and wear distribution characteristics of cutterhead for EPB shield tunneling in cobble-boulders

  • Zhiyong Yang;Xiaokang Shao;Hao Han;Yusheng Jiang;Jili Feng;Wei Wang;Zhengyang Sun
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.73-84
    • /
    • 2024
  • Owing to the high strength and abrasive characteristics of cobble-boulders, cutters are easily worn and damaged during shield tunneling, making construction inefficient. In the present work, the stress on the ripper and scraper on the cutterhead was analyzed by the PFC3D-FLAC3D coupling model of shield tunneling to get insight into the performance of the cutterhead for cutting underground cobble and boulders. The numerical calculation results revealed that the increase in trajectory radius leads to a rising stress on the cutters, and the stress on the front cutting surface is greater than that on the back of the cutters. Moreover, the correlation between cutter wear and stress is revealed based on field measurement data. The distribution of the cutter stress is consistent with the cutter wear and breakage characteristics in actual construction, in which more extensive cutter stress is exhibited, extreme cutter wear appears, and more cutter breakage occurs. Finally, the relationship between the cutterhead opening area's layout and cutter wear distribution was investigated, indicating that the cutter wear extent is the most severe in the region where the radial opening ratio dropped sharply.

Exploring Key Topics and Trends of Government-sponsored R&D Projects in Future Automotive Fields: LDA Topic Modeling Approach (미래 자동차 분야 국가연구개발사업의 주요 연구 토픽과 투자 동향 분석: LDA 토픽모델링을 중심으로)

  • Ma Hyoung Ryul;Lee Cheol-Ju
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.31-48
    • /
    • 2024
  • The domestic automotive industry must consider a strategic shift from traditional automotive component manufacturing to align with future trends such as connectivity, autonomous driving, sharing, and electrification. This research conducted topic modeling on R&D projects in the future automotive sector funded by the Ministry of Trade, Industry, and Energy from 2013 to 2021. We found that topics such as sensors, communication, driver assistance technology, and battery and power technology remained consistently prominent throughout the entire period. Conversely, topics like high-strength lightweight chassis were observed only in the first period, while topics like AI, big data, and hydrogen fuel cells gained increasing importance in the second and third periods. Furthermore, this research analyzed the areas of concentrated investment for each period based on topic-specific government investment amounts and investment growth rates.

Experimental study on Thermal Comfort of Electric Vehicle Occupants Using Local Proximity Heating Module (국부 근접 난방 모듈을 이용한 전기차 탑승자의 열쾌적성에 대한 실험적 연구)

  • Chae-Yeol Lee;Jong-Han Im;Jae-Wook Lee;Sang-Hee Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.655-663
    • /
    • 2024
  • In order to meet the technological demand for indoor heating systems that ensure winter thermal comfort during the transition from internal combustion engines to electrification, a localized proximity heating module using surface heating elements was developed. The operational performance of heating module was tested in the low temperature chamber. The experiment conditions were varied by changing the chamber temperature (-10, 0℃), the air flow rate (6.2, 6.0, 4.2m3/h), the heater power (100, 80, 60, 40W). Thermal comfort model was confirmed using the CBE Thermal Comfort Tool applying ASHRAE standard 55. Under -10℃ condition, thermal comfort was satisfied at 23.4, 23.2℃ at power of 100W and air flow rate 6.0, 4.6m3/h. Under 0℃ condition, at power of 80W, air flow rate 6.2, 6.0m3/h, and at power of 60W, air flow rate 4.6m3/h showed results of 25.7, 26.1, 23.0℃, respectively, satisfying thermal comfort. This study analyzed the operating performance of the local proximity heating module in the low temperature chamber and applied thermal comfort model to prove applicability of local proximity heating module using surface heating elements and how to utilize the thermal comfort model.