• Title/Summary/Keyword: electrical system issue

Search Result 401, Processing Time 0.031 seconds

A Study on Continuous Control of $1{\Phi}$ Condenser Type Induction Motor using 12 Step PWM 2 Phase Inverter (12 스텝 PWM 2상 인버터를 이용한 콘덴서형 단상 유도전동기의 연속제어 방안에 대한 연구)

  • Oh, Seog-Moon;Lee, Sung-Ryong;Yu, Chul-Ro
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.227-230
    • /
    • 1995
  • This paper presents continuous control concept of unsymmetrical 2 phase induction machine(I.M.). For 2 phase driving of the unsymmetrical I.M., variable voltage and variable frequency inverter is needed. In this paper, a new 12 step PWM 2 phase inverter was proposed. And then, proposed inverter fed 2 phase driving of unsymmetrical I.M. was studied, expecially on average torque and pulsation torque. This system has merits like higher fundamental component and better harmonic characteristics. The simulation was done on this issue and experimental research is on the way.

  • PDF

Buckling and vibrational information of an annular nanosystem covered with piezoelectric layer

  • Gao, Jie;Nie, Rong;Feng, Yongyi;Luo, Jiawei;Li, Siyu
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.233-245
    • /
    • 2022
  • Resently, the use of smart structures has been heightened up rapidly. For this issue, vibration analysis related to a graphene nanoplatelet composite (GPLRC) nanodisk which is attached to a piezoelectric layer and is subjected to thermal loads is explored in the current paper. The formulation of this study is obtained through the energy method and nonlocal strain gradient theory, and then it is solved employing generalized differential quadrature method (GDQM). Halpin-Tsai model in addition to the mixture's rule are utilized to capture the material properties related to the reinforced composite layer. The compatibility conditions are presented for exhibiting the perfect bounding between two layers. The results of this study are validated by employing the other published articles. The impact of such parameters as external voltage, the radius ratio, temperature difference, and nonlocality on the vibrational frequency of the system is investigated in detail.

Research of the Mechanism of Low Frequency Oscillation Based on Dynamic Damping Effect

  • Liu, Wenying;Ge, Rundong;Zhu, Dandan;Wang, Weizhou;Zheng, Wei;Liu, Fuchao
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1518-1526
    • /
    • 2015
  • For now, there are some low frequency oscillations in the power system which feature low frequency oscillation with positive damping and cannot be explained by traditional low frequency oscillation mechanisms. Concerning this issue, the dynamic damping effect is put forward on the basis of the power-angle curve and the study of damping torque in this article. That is, in the process of oscillation, damping will dynamically change and will be less than that of the stable operating point especially when the angle of the stable operating point and the oscillation amplitude are large. In a situation with weak damping, the damping may turn negative when the oscillation amplitude increases to a certain extent, which may result in an amplitude-increasing oscillation. Finally, the simulation of the two-machine two-area system verifies the arguments in this paper which may provide new ideas for the analysis and control of some unclear low frequency phenomena.

A Study on an Transmission Right Issuance Quantity Assessment Method by using Power Transfer Distribution Factor(PTDF) under FlowGate Right(FGR) (FlowGate Right(FGR) 도입 시 Power Transfer Distribution Factor(PTDF)를 이용한 송전권 계약용량 산정 방법 연구)

  • Baeck, Woong-Ki;Bang, Young-Sun;Chun, Yeong-Han;Kim, Jung-Hoon;Kwak, No-Hong;Lee, Baek-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.861-863
    • /
    • 2005
  • LMP based congestion management method is suggested as an effective tool, because network congestion can be handled by energy price. It is now being widely used in the North American Electricity Markets. Among them, FGR(Flow-gate rights) is considered to be appropriate for our system, as power flow through the congested line is unidirectional and congestion occurs in the known place. In the CBP market, hedging through transmission right is not necessary even though location pricing system is adopted, because there are no risks in the energy price. Rut, transmission rights should be adopted in the advanced market. Key issue when implementing FGR is how to decide transmission right issuance quantify. This paper deals with a method to decide transmission right issuance quantity by using power. Transfer Distribution Factor(PTDF).

  • PDF

Improved Physical Layer Implementation of VANETs

  • Khan, Latif Ullah;Khattak, M. Irfan;Khan, Naeem;Khan, Atif Sardar;Shafi, M.
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.3
    • /
    • pp.142-152
    • /
    • 2014
  • Vehicular Ad-hoc Networks (VANETs) are comprised of wireless mobile nodes characterized by a randomly changing topology, high mobility, availability of geographic position, and fewer power constraints. Orthogonal Frequency Division Multiplexing (OFDM) is a promising candidate for the physical layer of VANET because of the inherent characteristics of the spectral efficiency and robustness to channel impairments. The susceptibility of OFDM to Inter-Carrier Interference (ICI) is a challenging issue. The high mobility of nodes in VANET causes higher Doppler shifts, which results in ICI in the OFDM system. In this paper, a frequency domain com-btype channel estimation was used to cancel out ICI. The channel frequency response at the pilot tones was estimated using a Least Square (LS) estimator. An efficient interpolation technique is required to estimate the channel at the data tones with low interpolation error. This paper proposes a robust interpolation technique to estimate the channel frequency response at the data subcarriers. The channel induced noise tended to degrade the Bit Error Rate (BER) performance of the system. Parallel concatenated Convolutional codes were used for error correction. At the decoding end, different decoding algorithms were considered for the component decoders of the iterative Turbo decoder. A performance and complexity comparison among the various decoding algorithms was also carried out.

Failure Rate Calculation using the Mixture Weibull Distribution (혼합 와이블 분포를 이용한 고장률 산출 기법에 관한 연구)

  • Chai, Hui-seok;Shin, Joong-woo;Lim, Tae-jin;Kim, Jae-chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.500-506
    • /
    • 2017
  • In 2014, ISO 55000s has been enacted and the power plant asset management is becoming a hot issue for all over the world. The asset management system is being developed as a combination of CBM(Condition Based Maintenance) and RCM(Reliability Centered Maintenance). Therefore, the research on the calculation of the failure rate which is the most basic index of RCM is actively carried out. The failure rate calculation has been going on for a long time, and the most widely used probability distribution is the Weibull distribution. In the Weibull distribution, the failure rate function is determined in three types according to the value of the shape parameter. However, the Weibull distribution has a limitation that it is difficult to apply it when the trend of failure rate changes-such as bathtub curves. In this paper, the failure rate is calculated using the mixture Weibull distribution which can appropriately express the change of the shape of the failure rate. Based on these results, we propose the necessity and validity of applying mixture Weibull distribution.

Real-Coded Genetic Algorithm Based Design and Analysis of an Auto-Tuning Fuzzy Logic PSS

  • Hooshmand, Rahmat-Allah;Ataei, Mohammad
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.178-187
    • /
    • 2007
  • One important issue in power systems is dynamic instability due to loosing balance relation between electrical generation and a varying load demand that justifies the necessity of stabilization. Moreover, Power System Stabilizer (PSS) must have capability of producing appropriate stabilizing signals over a wide range of operating conditions and disturbances. To overcome these drawbacks, this paper proposes a new method for robust design of PSS by using an auto-tuning fuzzy control in combination with Real-Coded Genetic Algorithm (RCGA). This method includes two fuzzy controllers; internal fuzzy controller and supervisor fuzzy controller. The supervisor controller tunes the internal one by on-line applying of nonlinear scaling factors to inputs and outputs. The RCGA-based method is used for off-line training of this supervisor controller. The proposed PSS is tested in three operational conditions; nominal load, heavy load, and in the case of fault occurrence in transmission line. The simulation results are provided to compare the proposed PSS with conventional fuzzy PSS and conventional PSS. By evaluating the simulation results, it is shown that the performance and robustness of proposed PSS in different operating conditions is more acceptable

Optimal Design Considerations of a Bus Converter for On-Board Distributed Power Systems

  • Abe, Seiya;Hirokawa, Masahiko;Shoyama, Masahito;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.447-455
    • /
    • 2009
  • The power supply systems, which require low-voltage / high-current output has been changing from the conventional centralized power system to a distributed power system. The distributed power system consists of a bus converter and POL. The most important factor is the system stability in bus architecture design. The overlap between the output impedance of a bus converter input impedance of POL causes system instability and has been an actual problem. By increasing the bus capacitor, the system stability can be easily improved. However, due to limited space on the system board, the increasing of bus capacitors is impractical. An urgent solution of this issue is strongly desired. This paper presents the output impedance design for on-board distributed power system by means of three control schemes of a bus converter. The output impedance peak of the bus converter and the input impedance of the POL are analyzed and then conformed experimentally for stability criterion. Furthermore, the design process of each control schemes for system stability is proposed.

Functional Properties of Stand-alone Microgrid EMS Application (에너지 자립섬 EMS 어플리케이션의 기능적 특성)

  • Lee, Ha-Lim;Chun, Yeong-Han;Chae, Wookyu;Park, Jungsung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.115-119
    • /
    • 2016
  • For many past years, research in the operation of stand-alone Microgrid, which provides electric power generated from renewable energy sources and energy storage system instead of diesel generators, has been a major issue in order to prepare the exhaustion of fossil fuel and to protect environment, in island grids. Samso Island, known as the world's first stand-alone Microgrid in Denmark, is connected to the mainland grid through AC system, which has different technical conditions with Korea's isolated power system. Korea's first stand-alone Microgrid has been built in Ga-sa island, Chun-la-nam-do, based on Energy Management System (EMS) operation, and other islands are under construction to follow the next step. These stand-alone Microgrid's has large capacity of Battery Energy Storage System (BESS) and the proportion of the renewable energy sources are large, which makes it necessary to use a Microgrid-Energy Management System (MG-EMS) to operate the grid effectively and economically. However, since the main subject of MG-EMS is different from EMS, specific characteristics and functions must be different as well. In this paper, the necessary characteristics and functions are explained for a general MG-EMS compared to a large power system EMS.

Output Control Simulation of PV-AF Generation System under Various Weather Conditions (다양한 기상조건하에서의 AF기능을 갖는 태양광발전시스템의 출력제어 시뮬레이션)

  • Seong, Nak-Gueon;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1364-1366
    • /
    • 2002
  • The Photovoltaic(PV) generation system is a promising source of energy for the future. Since the need for renewable energy has been increased, the research of PV generation system has also been progressed. Recently, cost down of PV generation system has been accomplished and practical technologies of the solar energy developed, Moreover, grid connected PV generation system are becoming actual and general. Operational technology of the grid connected PV generation system is being a hot issue. Power output of PV system is directly affected by wether conditions. When AC power supply is needed, power conversion by an inverter and a MPPT control are necessary. In this paper, for stability improvement of PV generation system. Active filter(AF) function is added to PV generation system, and simulations of PV-AF system under various weather conditions are performed.

  • PDF