• Title/Summary/Keyword: electrical resistance method

Search Result 1,370, Processing Time 0.032 seconds

Development of Intelligent Electrofusion Welding Machine with Real-time Recognition of Conductive Plastic Heater Characteristics (전도성 플라스틱 발열체의 실시간 특성인식이 가능한 지능형 플라스틱 이음관 융착기 개발)

  • Kim, Dae Young;Yi, Keon Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1098-1103
    • /
    • 2014
  • This study deals with the development of an electrofusion welding machine that is capable of joining plastic pipes using a recently developed electrofusion fitting. This fitting has built-in conductive plastics that are used to weld the joint together as a heating element. In order to explain the mechanism of the new machine, 1) the resistance characteristics of the heating element were explained, 2) the method of electric welding that uses the electrofusion fitting was described, and 3) the method of power supply based on controlling the firing angle was explained. A control system for an intelligent electrofusion welding machine was proposed. This system has the ability to recognize the diameter of an electrofusion fitting using a lookup-table based on the difference of resistance curves according to fitting types, and it is able to weld the fittings regardless of the ambient temperature. A new algorithm was developed to control the power of electric welding through the recognition of feature points from the resistance curve of the heating element. In order to evaluate the performance of the developed welding machine, tests involving the welding of 16 mm- and 20 mm-type fittings were carried out. Examining the welding results, we concluded that the proposed welding machine will offer high productivity and reliability in the field of electrofusion welding.

High functional surface treatments for rapid heating of plastic injection mold (급속가열용 플라스틱 사출금형을 위한 고기능성 표면처리)

  • Park, Hyun-Jun;Cho, Kyun-Taek;Moon, Kyoung-Il;Kim, Tae-Bum;Kim, Sang-Sub
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.7-12
    • /
    • 2021
  • Plastic injection molds used for rapid heating and cooling must minimize surface damage due to friction and maintain excellent thermal and low electrical conductivity. Accordingly, various surface treatments are being applied. The properties of Al2O3 coating and DLC coating were compared to find the optimal surface treatment method. Al2O3 coating was deposited by thermal spray method. DLC films were deposited by sputtering process in room temperature and high temperature PECVD (Plasma enhanced chemical vapor deposition) process in 723 K temperature. For the evaluation of physical properties, the electrical and thermal conductivity including surface hardness, adhesion and wear resistance were analyzed. The electrical resistance of the all coated samples was showed insulation properties of 24 MΩ/sq or more. Especially, the friction coefficient of high temp. DLC coating was the lowest at 0.134.

Characteristcs of ZnO thin film by Ramp method (Ramp method로 제작한 ZnO 박막의 특성)

  • Lee, Woo-Sun;Chung, Chan-Moon;Son, Dong-Min;Seo, Yong-Jin;Kim, Sang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.226-229
    • /
    • 2001
  • To achieve ZnO layer with a high resistance, a new sputtering method with a Ramp method and cycled power process mode was developed. The specific resistance of the layers was in rang of $3*10^{10}{\Omega}cm$ to $2*10^{11}{\Omega}cm$. The characteristics of. ZnO thin films changed with working pressure and Ramp method were investigated by XRD(x-ray diffractometer), and SEM (scanning electron microscopy) analyses. This paper presents calculated and measured results for structures with thin ZnO layers. Measurements of SAW properties using thin ZnO layered structures will be shown. Also presented are results on the quality of ZnO films and specifics of the deposition process.

  • PDF

Characteristics of ZnO thin film by Ramp method (Ramp method로 제작한 ZnO박막의 특성)

  • 이우선;정찬문;손동민;서용진;김상용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.226-229
    • /
    • 2001
  • To achieve ZnO layer with a high resistance, a new sputtering method with a Ramp method and cycled power process mode was developed. The specific resistance of the layers was in rang of 3*10$\^$10/Ωcm to 2*10$\^$11/Ωcm. The characteristics of ZnO thin films changed with working pressure and Ramp method were investigated by XRD(x-ray diffractometer), and SEM (scanning electron microscopy) analyses. This paper presents calculated and measured results for structures with thin ZnO layers. Measurements of SAW Properties using thin ZnO layered structures will be shown. Also presented are results on the quality of ZnO films and specifics of the deposition process.

  • PDF

Electrical Properties of Synthesis LSCF Cathode by Modified Oxalate Method (Modified Oxalate Method로 의해 합성한 LSCF Cathode의 전기적 특성)

  • Lee, Mi-Jai;Kim, Sei-Ki;Jung, Ji-Mi;Park, Sang-Sun;Choi, Byung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.30-31
    • /
    • 2006
  • The LSCF cathode for Solid Oxide Fuel Cell was investigated to develop high performance unit cell at intermediate temperature by modified oxalate method with different electrolyte. The LSCF precursors using oxalic acid, ethanol and $NH_4OH$ solution were prepared at $80^{\circ}C$, and pH was controlled as 2, 6, 7, 8, 9 and 10. The synthesis precursor powders were calcined at $800^{\circ}C$, $1000^{\circ}C$ and $1200^{\circ}C$ for 4hrs. Unit cells were prepared with the calcined LSCF cathode, buffer layer between cathode and each electrolyte that is the LSGM, YSZ, ScSZ and CeSZ. The synthesis LSCF powders by modified oxalate method were measured by scanning electron microscope and X-ray diffraction. The interfacial polarization resistance of cell was characterized by Solatron 1260 analyzer. The crystal of LSCF powders show single phase at pH 2, 6, 7, 8 and 9, and the average particle size was about $3{\mu}m$. The electric conductivity of synthesis LSCF cathode which was calcined at $1200^{\circ}C$ shows the highest value at pH 7. The cell consist of GDC had the lowest interfacial resistance (about 950 S/cm@650) of the cathode electrode. The polarization resistance of synthesis LSCF cathode by modified oxalate method has the value from 4.02 to 7.46ohm at $650^{\circ}C$. GDC among the electrolytes, shows the lowest polarization resistance.

  • PDF

Detection of Delamination Crack for Polymer Matrix Composites with Carbon Fiber by Electric Potential Method

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.149-153
    • /
    • 2013
  • Delamination crack detection is very important for improving the structural reliability of laminated composite structures. This requires real-time delamination detection technologies. For composite laminates that are reinforced with carbon fiber, an electrical potential method uses carbon fiber for reinforcements and sensors at the same time. The use of carbon fiber for sensors does not need to consider the strength reduction of smart structures induced by imbedding sensors into the structures. With carbon fiber reinforced (CF/) epoxy matrix composites, it had been proved that the delamination crack was detected experimentally. In the present study, therefore, similar experiments were conducted to prove the applicability of the method for delamination crack detection of CF/polyetherethereketone matrix composite laminates. Mode I and mode II delamination tests with artificial cracks were conducted, and three point bending tests without artificial cracks were conducted. This study experimentally proves the applicability of the method for detection of delamination cracks. CF/polyetherethereketone material has strong electric resistance anisotropy. For CF/polyetherethereketone matrix composites, a carbon fiber network is constructed, and the network is broken by propagation of delamination cracks. This causes a change in the electric resistance of CF/polyetherethereketone matrix composites. Using three point bending specimens, delamination cracks generated without artificial initial cracks is proved to be detectable using the electric potential method: This method successfully detected delamination cracks.

Electrical Conductive Mechanism of Hot-pressed $\alpha-SiC-ZrB_2$ Composites (고온가압소결한 $\alpha-SiC-ZrB_2$ 복합체의 전기전도기구)

  • Shin, Yong-Deok;Ju, Jin-Young;Kwon, Ju-Sung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.104-108
    • /
    • 1999
  • The electrical conductive mechanism and temperature dependence of electrical resistivity of $\alpha-SiC-ZrB_2$ composites with $ZrB_2$ contents were investigated. The electrical resistivity of hot-pressed composites was measured by the Pauw method form $25^{\circ} to 700^{\circ}C$. The electrical resistivity of the composites follow the electrical conduction model for a homogeneous mixture of two kind of particles with different conductivity. Also, the electrical resistivity versus temperature curves indicate the formation of local chains of $ZrB_2$ particles. In case of $\alpha-SiC-ZrB_2$ composites containing above 39vol.% $ZrB_2$ showed positive temperature coefficient resistance(PTCR), whereas the electrical resistivity of $\alpha-SiC-21vol.% ZrB_2$ showed negative temperature coefficient resistance(NTCR).

  • PDF

Sensorless Control of Induction Motors with Simultaneous Estimation of Speed and Rotor Resistance in the Very Low Speed Region (속도와 2차 저항의 동시 추정이 가능한 유도전동기의 극 저속 영역 센서리스 속도제어)

  • 정석권;이진국;유삼상
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.9
    • /
    • pp.552-561
    • /
    • 2004
  • This paper is concerned with a new speed sensorless induction motor scheme which can be successfully applied to at any speed including even zero speed. The proposed method is robust against rotor resistance variations. In addition, simultaneous on-line estimations of speed and rotor resistance are realized based on a feedforward type torque control approach. The rotor flux with a low frequency sinusoidal waveform has been utilized to help the simultaneous estimation for both speed and rotor resistance. The control scheme has no current minor loop to determine voltage references. Since the proposed estimation does not depend on any derivative terms of currents and stator voltages, it offers a good performance at extremely low speed region for sensorless induction motor. Furthermore, the proposed control is simply using motor parameters and stator currents without determining any PI gains for current feedback and any signal injection for the rotor resistance estimation. Finally, both simulation and experimental results are given to show the effectiveness of this method.

Measuring method of electric resistance using thermoelectric properties of module (열전모듈의 발전특성을 이용한 전기저항 변화 측정)

  • Woo, Byung-Chul;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1332-1334
    • /
    • 2002
  • Thermoelectric generation is the direct energy conversion method from heat th electric power. The conversion method is a very useful utilization of waste energy because of its possibility using a thermal energy below $150^{\circ}C$ This research objective is th establish the thermoelectric technology on a optimum system design method and efficiency, and cost effective thermoelectric element in order to extract the maximum electric power from a wasted hot water. This paper is considered in manufacturing a thermoelectric generator and measuring of electric resistance of module a thermoelectric modules. It was found that the electric resistance of thermoelectric modules was defined as a temperature functions. The relationship between electric resistance and temperature characteristics can be a analogized as function of electric current.

  • PDF

In-Situ Electrical Resistance and Microstructure for Ultra-Thin Metal Film Coated by Magnetron Sputtering (마그네트론 스파터시 금속 극박막의 실시간 전기저항과 미세구조 변화)

  • Kwon, Na-Hyun;Kim, Hoi-Bong;Hwang, Bin;Bae, Dong-Su;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.174-179
    • /
    • 2011
  • Ultra-thin aluminum (Al) and tin (Sn) films were grown by dc magnetron sputtering on a glass substrate. The electrical resistance R of films was measured in-situ method during the film growth. Also transmission electron microscopy (TEM) study was carried out to observe the microstructure of the films. In the ultra-thin film study, an exact determination of a coalescence thickness and a continuous film thickness is very important. Therefore, we tried to measure the minimum thickness for continuous film (dmin) by means of a graphical method using a number of different y-values as a function of film thickness. The raw date obtained in this study provides a graph of in-situ resistance of metal film as a function of film thickness. For the Al film, there occurs a maximum value in a graph of in-situ electrical resistance versus film thickness. Using the results in this study, we could define clearly the minimum thickness for continuous film where the position of minimum values in the graph when we put the value of Rd3 to y-axis and the film thickness to x-axis. The measured values for the minimum thickness for continuous film are 21 nm and 16 nm for sputtered Al and Sn films, respectively. The new method for defining the minimum thickness for continuous film in this study can be utilized in a basic data when we design an ultra-thin film for the metallization application in nano-scale devices.