High functional surface treatments for rapid heating of plastic injection mold

급속가열용 플라스틱 사출금형을 위한 고기능성 표면처리

  • Park, Hyun-Jun (Department of Heat & Surface treatment R&D, Korea Institute of Industrial Technology) ;
  • Cho, Kyun-Taek (Department of Heat & Surface treatment R&D, Korea Institute of Industrial Technology) ;
  • Moon, Kyoung-Il (Department of Heat & Surface treatment R&D, Korea Institute of Industrial Technology) ;
  • Kim, Tae-Bum (Department of Heat & Surface treatment R&D, Korea Institute of Industrial Technology) ;
  • Kim, Sang-Sub (Department of Materials Science and Engineering, Inha University)
  • 박현준 (한국생산기술연구원 친환경열표면처리연구부문) ;
  • 조균택 (한국생산기술연구원 친환경열표면처리연구부문) ;
  • 문경일 (한국생산기술연구원 친환경열표면처리연구부문) ;
  • 김태범 (한국생산기술연구원 친환경열표면처리연구부문) ;
  • 김상섭 (인하대학교 신소재공학과)
  • Received : 2021.06.22
  • Accepted : 2021.09.30
  • Published : 2021.09.30

Abstract

Plastic injection molds used for rapid heating and cooling must minimize surface damage due to friction and maintain excellent thermal and low electrical conductivity. Accordingly, various surface treatments are being applied. The properties of Al2O3 coating and DLC coating were compared to find the optimal surface treatment method. Al2O3 coating was deposited by thermal spray method. DLC films were deposited by sputtering process in room temperature and high temperature PECVD (Plasma enhanced chemical vapor deposition) process in 723 K temperature. For the evaluation of physical properties, the electrical and thermal conductivity including surface hardness, adhesion and wear resistance were analyzed. The electrical resistance of the all coated samples was showed insulation properties of 24 MΩ/sq or more. Especially, the friction coefficient of high temp. DLC coating was the lowest at 0.134.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부의 산업소재 핵심기술개발사업(KM210056)의 연구비 지원에 의한 연구임.

References

  1. J.C.G. Milan, A.R. Machado, I.V. Tomaz, L.R.R. da Silva, C.A. Barbosa, M. Mia, D.Y. Pimenov, "Effects of calcium-treatment of a plastic injection mold steel on the tool wear and power consumption in slot milling", J. Mater. Res. Technol. 13, pp. 1103-1114, 2021. https://doi.org/10.1016/j.jmrt.2021.05.021
  2. K. Schutzer, A.L. Helleno, S.C. Pereira, "The influence of the manufacturing strategy on the production of molds and dies", J. Mater. Pro. Technol. 179, pp. 172-177, 2006. https://doi.org/10.1016/j.jmatprotec.2006.03.098
  3. P. Krajnik, J. Kopac, "Modern machining of die and mold tools", J. Mater. Pro. Technol. 157-158, pp. 543-552, 2004. https://doi.org/10.1016/j.jmatprotec.2004.07.146
  4. Z. Li, J. Zhang, B. Dai, Y. Liu, "Microstructure and corrosion resistance property of laser transformation hardening pre-hardened AISI P20 plastic die steel" Opt. Laser Technol. 122, 105852, 2020. https://doi.org/10.1016/j.optlastec.2019.105852
  5. K. Van Acker, K. Vercammen, "Abrasive wear by TiO2 particles on hard and on low friction coatings", Wear 256, pp. 353-361, 2004. https://doi.org/10.1016/S0043-1648(03)00462-9
  6. B. Zabala, X. Fernandez, J.C. Rodriguez, A. Lopez-Ortega, E. Fuentes, R. Bayon, A. Igartua, F. Girot, "Mechanism-based wear models for plastic injection moulds", Wear 440-441, 203105, 2019. https://doi.org/10.1016/j.wear.2019.203105
  7. J. Robertson, "Hard amorphous (diamond-like) carbons", Prog. Solid State Chem. 21, 199-333, 1991. https://doi.org/10.1016/0079-6786(91)90002-H
  8. N. Nelson, R.T. Rakowski, J. Franks, P. Woolliams, P. Weaver, B.J. Jones, "The effect of substrate geometry and surface orientation on the film structure of DLC deposited using PECVD" Surf. Coat. Technol. 254, pp. 73-78, 2014. https://doi.org/10.1016/j.surfcoat.2014.05.066
  9. S.D.A. Lawes, M.E. Fizpatrick, S.V. Hainsworth, "Evaluation of the tribological properties of DLC for engine applications", J. Phys. D: Appl. Phys. 40, pp. 5427-5437, 2007. https://doi.org/10.1088/0022-3727/40/18/S03
  10. T. Wu, K. Cheng, "An investigation on the micro cutting performance of diamond-like carbon coatings using finite element method", Int. J. Adv. Manuf. Technol. 73, pp. 1321-1340, 2014. https://doi.org/10.1007/s00170-014-5904-6
  11. Y. Sugaya, Y. Motohashi, "Development of Shrinkage-Fit Die Coated with Film Possessing Low Friction Coefficient for Compacting Metal Powders", J. JSTP 48, pp. 110-114, 2007. https://doi.org/10.9773/sosei.48.110
  12. A. Grill, B. Meyerson, V. Patel, "Interface modifications for improving the adhesion of a-C:H films to metals", J. Mater. Res. 3 (2), pp. 214-217, 1988. https://doi.org/10.1557/JMR.1988.0214
  13. Y. Jun, J.Y. Choi, K.R. Lee, B.K. Jeong, S.K. Kwon, C.H. Hwang, "Application of diamondlike carbon films to spacer tools for electron guns of cathode ray tube (CRT)", Thin Solid Films 377-378, pp. 233-238, 2000. https://doi.org/10.1016/S0040-6090(00)01430-9
  14. Q. Zhang, S.F. Yoon, S. Zhgoon, B. Gan, J. Ahn, A. Revkov, A. Rusli, "Study of diamond like carbon films on LiNbO3", Thin Solid Films 360, pp. 274-277, 2000. https://doi.org/10.1016/S0040-6090(99)00886-X
  15. G. Capote, G.C. Mastrapa, V.J. Trava-Airoldi, "Influence of acetylene precursor diluted with argon on the microstructure and the mechanical and tribological properties of aC: H films deposited via the modified pulsed-DC PECVD method", Surface & Coatings Technology 284, pp. 145-152, 2015. https://doi.org/10.1016/j.surfcoat.2015.08.065
  16. P. Mosaner, M. Bonelli, A. Miotello, "Pulsed laser deposition of diamond-like carbon films: reducing internal stress by thermal annealing", Appl. Surf. Sci. 208-209, pp. 561-565, 2003. https://doi.org/10.1016/S0169-4332(02)01383-1
  17. H.J. Park, M.C. Kim, S.S. Kim, K.I. Moon, "Mechanical properties of DLC films and duplex plasma nitriding/DLC coating treatment process", J. Korean Inst. Surf. Eng. 53, pp. 306-311, 2020. https://doi.org/10.5695/JKISE.2020.53.6.306
  18. L. Yu, D. Yang, Q. Wei, L. Zhang, "Constructing of strawberry-like core-shell structured Al2O3 nanoparticles for improving thermal conductivity of nitrile butadiene rubber composites", Compos. Sci. Eng. 209, 108786, 2021.