• Title/Summary/Keyword: electrical resistance measurement

Search Result 554, Processing Time 0.025 seconds

Simulation and Measurement of Earth resistance Values in Common Earth Network (공동 접지망에서의 접지 저항값 시뮬레이션 및 측정)

  • Kim, Yong-Kyu;Kim, Jong-Gi;Yang, Doh-Chul;Park, Hyun-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1073-1074
    • /
    • 2006
  • In this paper, we perform a simulation to verify the earth resistance values in Common Earth Network. The simulation is performed on the assumption that certain shorts are occurred in common earth network. Furthermore, from the result, we confirmed that very small earth resistance values in common earth network are given, by carrying out practical measurements in railway sections where common earth network is composed. From the effect, we could discover that the construction of common earth network is in a disadvantageous position on the financial aspect, while it is the most desirable way of construction for the purpose of Earth.

  • PDF

Minimized Distance of the Current Electrode in the Measurement of Ground Resistance (접지저항 측정에 있어서 전류전극의 최소 이격거리)

  • Lee, Sang-Mu;Kang, Young-Heung;Yang, Jun-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.68-73
    • /
    • 2006
  • As in the measurement of ground resistance by using the 3 point fall-of-potential method, it is known that the distance of current electrode should be at the point of showing the plateu on the potential curve. But the problem is that it my be practically impossible to meet the condition in actual sites. For solving such a situation, this paper provides the least distance of current electrode according to the analysis for the test-field measurement showing that it is feasible to measure the ground resistance in the two in current electrode distance as the length of driven-rod type electrode and the some district length of mesh electrode.

Characterization of Photoinduced Current in Poly-Si Solar Cell by Employing Photoconductive Atomic Force Microscopy (PC-AFM)

  • Heo, Jin-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.35-38
    • /
    • 2012
  • In this study, we have attempted to characterize the photovoltaic effect in real-time measurement of photoinduced current in a poly-Si-based solar cell using photoconductive atomic force microscopy (PC-AFM). However, the high contact resistance that originates from the metal-semiconductor Schottky contact disturbs the current flow and makes it difficult to measure the photoinduced current. To solve this problem, a thin metallic film has been coated on the surface of the device, which successfully decreases the contact resistance. In the PC-AFM analysis, we used a metal-coated conducting cantilever tip as the top electrode of the solar cell and light from a halogen lamp was irradiated on the PC-AFM scanning region. As the light intensity becomes stronger, the current value increases up to $200{\mu}A$ at 80 W, as more electrons and hole carriers are generated because of the photovoltaic effect. The ratio of the conducting area at different conditions was calculated, and it showed a behavior similar to that generated by a photoinduced current. On analyzing the PC-AFM measurement results, we have verified the correlation between the light intensity and photoinduced current of the poly-Si-based solar cell in nanometer scale.

Measurement of the Ground Resistance using the Fall-of-Potential Method with the Vertically-placed Current and Potential Auxiliary Electrodes (전류 및 전위 보조전극을 수직으로 배치하는 전위강하법을 이용한 접지저항의 측정)

  • Lee, Bok-Hee;Kim, Ki-Bok;Kim, You-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.3
    • /
    • pp.53-60
    • /
    • 2012
  • The fall-of-potential method is commonly used in measuring the ground resistance of large-scaled grounding system and the current and potential auxiliary electrodes are horizontally arranged. Because the distances between the ground grid to be tested and auxiliary electrodes are limited in downtown areas, it is very difficult to measure accurately the ground resistance of large-scaled grounding system. In this paper, the fall-of-potential method of measuring the ground resistance with the vertically-placed current and potential auxiliary electrodes was examined and discussed. The validity and good accuracy of the proposed method of measuring the ground resistance were confirmed through various simulations and actual tests carried out in uniform and two-layer soil structures.

Effect of Contact Statistics on Electrical Contact Resistance (전기접촉저항에 관한 접촉통계치의 영향)

  • Jang, Yong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1080-1085
    • /
    • 2003
  • The flow of electrical current through a microscopic actual contact spot between two conductors is influenced by the flow through adjacent contact spots. A smoothed version of this interaction effect is developed and used to predict the contact resistance when the statistical size and spatial distribution of contact spots is known. To illustrate the use of the method, an idealized fractal rough surface is defined using the random midpoint displacement algorithm and the size distribution of contact spots is assumed to be given by the intersection of this surface with a constant height plane. With these assumptions, it is shown that including finer scale detail in the fractal surface, equivalent to reducing the sampling length in the measurement of the surface, causes the predicted resistance to approach the perfect contact limit.

  • PDF

Research on Standards for Protection against Electric Shock in Global Technical Regulations of Fuel Cell Vehicle (연료전지 자동차 세계기술규정의 감전보호기준 연구)

  • HwangBo, Cheon;Lee, Kyu-Myong;You, Kyeong-Jun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.167-183
    • /
    • 2010
  • This paper analyzes the backgrounds of the standards for protection against electric shock in Global Technical Regulations (GTR) of Fuel Cell Vehicle (FCV). Targets on research were high voltage criteria, safety current, isolation and grounding resistance, time limitation, energy, adequate clearance, and test procedure. Based on human impedance and effect of current in IEC 60479-1, safety of human was examined. Then, isolation and grounding circuit model of FCV were analyzed theoretically. The results give several suggestions: touch voltage less than 25V, AC energy less than 0.0813J, separation considering middle finger length, grounding resistance less than $0.2\Omega$, maximum AC ground voltage of 1V (rms), and isolation resistance between earth and electrical chassis. In MATLAB/Simulink environment, error characteristics of isolation resistance measurement procedure using internal DC sources were analyzed under variations of internal resistance of voltmeter and isolation resistance.

Effect of Sn Addition on the SCC Properties of Al-Cu-Mn Cast Alloy (Al-Cu-Mn 주조합금의 SCC 특성에 미치는 Sn 첨가의 영향)

  • Kim, Kwang-Nyeon;Kim, Kyung-Hyun;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.436-441
    • /
    • 2002
  • Effect of Sn addition on the stress corrosion cracking(SCC) resistance of the Al-Cu-Mn cast alley was investigated by C-ring teat and electrical conductivity measurement, The electrical conductivity and SCC resistance increased by Sn addition. The alley containing 0,10%Sn showed maximum electrical conductivity and the best SCC resistance. At the same composition, the electrical conductivity and SCC resistance increased from peak aged condition to ever aged condition. The PFZ and coarse precipitates along the grain boundary were observed from TEM micrographs. The fracture mode of the alloy was confirmed as intergranular type and showed brittle fracture surface. The SCC mechanism of the alloy was concluded as the anodic dissolution model, The maximum hardness was increased from 130Hv in the Sn-free alloy to 156Hv in the 0.10%Sn added alloy.

Evaluation of Setting Delay in Mortar Adding Superplasticizer Using Electrical Resistivity Measurement (전기비저항 측정법을 이용한 유동화 모르타르의 응결 지연 현상 평가)

  • Lee, Hanju;Yim, Hong Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.9-15
    • /
    • 2018
  • According to the development and use of self-consolidating concrete in field, interest in material properties of early-age concrete is rising. Setting time with hydration process of cement is one of significant indicator to evaluate the early-age material properties of concrete, various nondestructive methods including penetration resistance measurement have been proposed to estimate setting time. This study performed an experimental approach to evaluate setting time delay in mortar adding superplasticizer using electrical resistivity measurement. For this purpose, total nine types of mortar samples were prepared, and its electrical resistivity was monitoring during 24h after mixing. From the experimental result, rising time of electrical resistivity was used to evaluate setting delay of mortar, and penetration resistance was also measured for comparison. In addition, dynamic elastic modulus and compressive strength of 1day mortar were measured to investigate a possibility the use of electrical resistivity measurement for evaluation of early-age material properties.

A New Resistance Model for a Schottky Barrier Diode in CMOS Including N-well Thickness Effect

  • Lee, Jaelin;Kim, Suna;Hong, Jong-Phil;Lee, Sang-Gug
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.381-386
    • /
    • 2013
  • A new resistance model for a Schottky Barrier Diode (SBD) in CMOS technology is proposed in this paper. The proposed model includes the n-well thickness as a variable to explain the operational behavior of a planar SBD which is firstly introduced in this paper. The model is verified using the simulation methodology ATLAS. For verification of the analyzed model and the ATLAS simulation results, SBD prototypes are fabricated using a $0.13{\mu}m$ CMOS process. It is demonstrated that the model and simulation results are consistent with measurement results of fabricated SBD.

Sliding Wear and Corrosion Resistance of Copper-based Overhead Catenary for Traction Systems

  • Kwok, C.T.;Wong, P.K.;Man, H.C.;Cheng, F.T.
    • International Journal of Railway
    • /
    • v.3 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • In the present study, the electrical sliding wear and corrosion resistance of pure copper (Cu) and six age-hardened copper alloys (CuCr, CuZr, CuCrZr, CuNiSiCr, CuBe and CuBeNi) were investigated by a pin-on-disc tribometer and electrochemical measurement. Various copper-based alloys in the form of cylindrical pin were forced to slide against a counterface stainless steel disc in air under unlubricated condition at a sliding velocity of 31 km/h under normal load up to 20 N with and without electric current. The worn surface of and wear debris from the specimens were studied by scanning electron microscopy. Both mechanical wear and electrical arc erosion were the wear mechanisms for the alloys worn at 50 A. Owing to its good electrical conductivity, high wear and corrosion resistance, CuCrZr is a promising candidate as the overhead catenary material for electric traction systems.

  • PDF