• Title/Summary/Keyword: electrical parameter estimation

Search Result 556, Processing Time 0.028 seconds

Fault Detection of BLDC Motor Using Serial Communication Based Parameter Estimation (시리얼 통신 기반 파라미터 추정에 의한 BLDC모터의 고장검출)

  • 서석훈;유정봉;우광준
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.45-52
    • /
    • 2002
  • This paper presents fault detection scheme of Brushless DC(BLDC) motor drive system by estimating BLDC motor resistance using motor input and output data which is transmitted from data acquisition board to host computer over serial communication channel. Since communication time delay has a serious effect on performance, we use periodic and fixed communication protocol. Hence, the delay time is priory known. Simplified BLDC motor model and recursive least square algorithm is used for estimating motor resistance. By experiment result, we confirm the proposed scheme.

A Neural Multiple LMS Based ANC System for Reducing Acoustic Noise of High-Speed Trains (신경회로망 다중 LMS 기법을 이용한 고속철도의 실내소음저감을 위한 ANC 시스템)

  • Cho, Hyun-Cheol;Lee, Kwon-Soon;Nam, Hyun-Do
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.385-390
    • /
    • 2009
  • This paper presents a novel active noise control (ANC) system using least mean square (LMS) algorithm and neural network approach for decreasing acoustic noise signals inside high-speed trains. We construct a LMS framework as a nominal ANC system and additionally design an artificial single-layered perceptron model as an auxiliary ANC which is aimed to reduce real-time residuary noise due to its nonstationary and uncertain nature. Parameter vector of the hybrid ANC is determined through online estimation to realize an adaptive ANC configuration by means of the steepest descent algorithm. We achieve simulation experiment to demonstrate the proposed ANC system employing realistic acoustic noise signals measured in Korea Train eXpress (KTX).

The Control Parameter Estimation for Model Mismatch of Plant′s PPI Controller (플랜트 PPI 제어기의 모델 불일치를 위한 제어변수 추정)

  • 신강욱;박준열
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.49-54
    • /
    • 2004
  • In process control, PPl controller including smith predictor was proposed for efficient control method because of the weak performance by the effect of long dead-time. But PPI controller can not guarantee of control performance at real plant because of sensitivity to model mismatch. Thus, In this paper, we presented new control parameter estimation strategy for compensating of model mismatch. The proposed startegy obtained useful result through various cases.

A Study on the Design of Adaptive $H_{\infty}$ sub INF Controller-Polynomial Approach (적응 $H_{\infty}$ 제어기의 설계에 관한 연구 - 다항식 접근방법)

  • Kim, Min-Chan;Park, Seung-Kyu;Kim, Tae-Won;Ahn, Ho-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.4
    • /
    • pp.129-136
    • /
    • 2002
  • This paper presents a $H_{\infty}$ robust controller with parameter estimation in polynomial approach. For good performance of a uncertain system, the parameters are estimated by RLS algorithm. The controller minimizes the sum of $H_{\infty}$ norm between sensitivity function and complementary sensitivity function by employing the Youla parameterization and polynomial approach at the same time. A numerical example and its simulation results are given to show the validity of the proposed controller.

Adaptive Feedback Linearization Control Based on Stator Fluxes Model for Induction Motors

  • Jeon, Seok-Ho;Park, Jin-Young
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.253-263
    • /
    • 2002
  • This paper presents an adaptive feedback linearization control scheme for induction motors using stator fluxes. By using stator flukes as states, overparameterization is prevented and control inputs can be determined straightforwardly unlike in existing schemes. This approach leads to the decrease of the relative degree for the flux modulus and thus yields a simpler control algorithm than the prior results. In this paper. adaptation schemes are suggested to compensate for the variations of stator resistance. rotor resistance and load torque. In particular, the adaptation to the variation of stator resistance with a feedback linearization control is a new trial. In addition, to improve the convergence of rotor resistance estimation, the differences between stator currents and its estimates are used for the parameter adaptation. The simulations show that torque and flux are controlled independently and that the estimates of stator resistance, rotor resistance, and load torque converge to their true values. Actual experiments on a 3.7㎾ induction motor verify the effectiveness of the proposed method.

Joint synchronization and parameter estimation in OFDM signaling

  • Sara Karami;Hossein Bahramgiri
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.226-239
    • /
    • 2023
  • Challenges in cognitive radio and tactical communications include recognizing anonymously received signals and estimating parameters in a blind or semi-blind manner. In this paper, we examine this issue for orthogonal frequency division multiplexing (OFDM) signaling. There are several parameters in OFDM signaling, and the blind receiver must extract and consider the synchronization issue. We assume that the blind receiver is aware of modulation type, OFDM, and not aware of chip duration and the length of cyclic prefix. First, we present new criteria based on kurtosis to estimate these parameters and compare their performance at different levels of additive white Gaussian noise with methods based on correlation, kurtosis, maximum likelihood, and matched filter. Then, we perform synchronization and estimate the start time based on these criteria and several new criteria in two steps: fine and coarse synchronization. Finally, in a more practical setup, we present the idea of jointly estimating the mentioned parameters and the signal start time as coarse synchronization. We compare different criteria and show that one of the proposed criteria has the highest efficiency.

Estimation error bounds of discrete-time optimal FIR filter under model uncertainty

  • Yoo, Kyung-Sang;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.352-355
    • /
    • 1995
  • In this paper, estimation error bounds of the optimal FIR (Finite Impulse Response) filter, which is proposed by Kwon et al.[1, 2], are presented in discrete-time systems with the model uncertainty. Performance bounds are here represented by the upper bounds on the difference of the estimation error covariances between the nominal and real values in case of the systems with the noise or model parameter uncertainty. The estimation error bounds of the discrete-time optimal FIR filter is compared with those of the Kalman filter via a numerical example applied to the simulation problem by Toda and Patel[3]. Simulation results show that the former has robuster performance than the latter.

  • PDF

A Study on Methodology of Soil Resistivity Estimation Using the BP (역전과 알고리즘(BP)을 이용한 대지저항률 추청 방법에 관한 연구)

  • Ryu, Bo-Hyeok;Wi, Won-Seok;Kim, Jeong-Hun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.2
    • /
    • pp.76-82
    • /
    • 2002
  • This paper presents the method of sail-resistivity estimation using the backpropagation(BP) neural network. Existing estimation programs are expensive, and their estimation methods need complex techniques and take much time. Also, those programs have not become well spreaded in Korea yet. Soil resistivity estimation method using BP algorithm has studied for the reason mentioned above. This paper suggests the method which differs from expensive program or graphic technology requiring many input stages, complicated calculation and professional knowledge. The equivalent earth resistivity can be presented immediately after inputting apparent resistivity through the personal computer with a simplified Program without many Processing stages. This program has the advantages of reasonable accuracy, rapid processing time and confident of anti users.

Stator Resistance Estimation of Permanent Magnet Synchronous Motor by using Kalman Filter (칼만 필터를 이용한 영구자석 동기 전동기의 고정자 저항값 검출 방법)

  • Hwang, Sangjin;Lee, Dongmyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.92-98
    • /
    • 2019
  • Accurate estimation of motor parameters is required in some motor control applications. For example, the value of stator resistance is required for stator flux-oriented control mostly used in doubly fed induction generator systems. Stator resistance is not a constant value and continuously changes due to the rise in temperature during motor operation. Estimation errors degrade the control performance. Hence, this study proposes a simple stator resistance estimation method. In this scheme, the differential components of voltage and current values are used to eliminate the dead-time effect, and Kalman filter algorithm is applied to reduce the error according to measurement noise. Simulation and experimental results obtained with a permanent magnet motor show the validity of the proposed algorithm.

Structural design of Optimized Interval Type-2 FCM Based RBFNN : Focused on Modeling and Pattern Classifier (최적화된 Interval Type-2 FCM based RBFNN 구조 설계 : 모델링과 패턴분류기를 중심으로)

  • Kim, Eun-Hu;Song, Chan-Seok;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.692-700
    • /
    • 2017
  • In this paper, we propose the structural design of Interval Type-2 FCM based RBFNN. Proposed model consists of three modules such as condition, conclusion and inference parts. In the condition part, Interval Type-2 FCM clustering which is extended from FCM clustering is used. In the conclusion part, the parameter coefficients of the consequence part are estimated through LSE(Least Square Estimation) and WLSE(Weighted Least Square Estimation). In the inference part, final model outputs are acquired by fuzzy inference method from linear combination of both polynomial and activation level obtained through Interval Type-2 FCM and acquired activation level through Interval Type-2 FCM. Additionally, The several parameters for the proposed model are identified by using differential evolution. Final model outputs obtained through benchmark data are shown and also compared with other already studied models' performance. The proposed algorithm is performed by using Iris and Vehicle data for pattern classification. For the validation of regression problem modeling performance, modeling experiments are carried out by using MPG and Boston Housing data.