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Adaptive Feedback Linearization Control
Based on Stator Fluxes Model for Induction Motors

Seok Ho Jeon and Jin Young Choi

Abstract: This paper presents an adaptive feedback linearization control scheme for induction motors using stator fluxes. By using
stator fluxes as states, overparameterization is prevented and control inputs can be determined straightforwardly unlike in existing
schemes. This approach leads to the decrease of the relative degree for the flux modulus and thus yields a simpler control algorithm
than the prior results. In this paper, adaptation schemes are suggested to compensate for the variations of stator resistance, rotor resis-
tance and load torque. In particular, the adaptation to the variation of stator resistance with a feedback linearization control is a new
trial. In addition, to improve the convergence of rotor resistance estimation, the differences between stator currents and its estimates
are used for the parameter adaptation. The simulations show that torque and flux are controlled independently and that the estimates
of stator resistance, rotor resistance, and load torque converge to their true values. Actual experiments on a 3.7kw induction motor

verify the effectiveness of the proposed method.
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L. Introduction

To achieve high performance of an induction motor, which
is widely used due to its reliability, low cost, and easy mainte-
nance, the field-oriented control scheme has been developed
[1]. The field-oriented control scheme cannot achieve decoup-
ling control between two output variables, i.e. torque and flux,
while flux changes in a field weakening region. Various
nonlinear control schemes have also been applied to induction
motors. In particular, the feedback linearization methods that
guarantee the decoupling characteristics in all operation re-
gions have been proposed [7]-[15]. Passivity based methods
have been applied to induction motors [16}[17][18] and the
backstepping technique has also been proposed [19]. Since
some motor parameters such as rotor resistance and stator
resistance are varied during the operation due to temperature,
skin effect and so on, it is necessary to compensate for the
parameter variations. An adaptive feedback linearization con-
trol scheme with respect to load torque and rotor resistance
has already been proposed [10].

This paper attempts to design a simple control scheme by
using the stator fluxes unlike the existing ones mentioned in
the above. The model of a three phase balanced induction
motor is described in a two-axis coordinate frame under the
assumption of linear magnetic circuits. Provided that two vari-
ables are determined as states among stator currents ( 7, iq_s_ )
rotor currents (i, i, ), stator fluxes (4,4, ), and rotor
fluxes (4, . 4,, ), an induction motor can be described in a
various fourth-order model [2]. Among the variables, stator
currents are usually used since they can be directly measured
by hall sensors, but rotor currents are not, since they cannot be
measured due to the mechanical structure of induction motors.
Although either stator fluxes or rotor fluxes can be chosen as
states, the control scheme of induction motors based on rotor
flux model is preferred in implementation of torque or speed
controller than that based on stator flux model because the
estimation of stator fluxes includes the integral, which makes
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the estimated stator fluxes to be easily saturated due to offset
or drift errors. So. in most cases, except for some special cases
such as sensorless control, rotor flux model is adopted for the
estimation and flux control. The field-oriented control based
on rotor flux model can control torque and flux independently
by each current controller. If the flux reference is constant, d-
axis stator current controls flux magnitude and g-axis stator
current controls motor torque. In addition, most feedback lin-
earization control schemes and nonlinear control methods
have been derived using rotor fluxes as states. A few field-
oriented control schemes have used stator flux as states, which
show robustness against motor inductance variation [3]-[6].

This paper aims to develop an adaptive feedback lineariza-
tion control scheme using stator fluxes to show the advantages
of the stator flux model over the rotor flux model. In deriving
adaptive nonlinear control with respect to motor resistances,
the stator flux model is simpler than the rotor flux model. The
relative degree for flux modulus is decreased, control inputs
can be determined straightforwardly, and overparameterization
disappears. Among the parameters, in addition to rotor resis-
tance and load torque whose adaptation schemes have already
been developed, the stator resistance adaptation law is pro-
posed. The adaptation of stator resistance is a new trial in
nonlinear control for induction motors.

This paper uses two control loop; in the inner loop, motor
torque and the flux modulus are controlled while estimating
stator and rotor resistances, and in the outer loop, speed is
controlled while estimating load torque. In the speed controller.
load torque is always estimated by a simple adaptive feedback
linearization method. However, in the torque and flux control-
ler, stator and rotor resistances cannot be guaranteed to be
estimated if there does not exist motor torque. To improve the
convergence of rotor resistance estimation, we estimate the
stator currents with estimated parameters, and the difference
from the actual currents is used as additional terms for the
resistance adaptation. Using this method, rotor resistance can
be estimated even when torque is zero, unless the flux
modulus is constant.

The rest of this paper is organized as follows. Section Il de-
scribes the key ideas and design approach. Section III designs
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a torque and flux controller in the inner loop, in which the
convergence of tracking errors and parameter errors are ana-
lyzed. Section IV designs a speed controller in the outer loop.
Section V and section VI show the simulation results and ex-
periment results respectively for the proposed method. Con-
clusions are given in section VII.

11. Statements of key idea and design approach

Using dq-transformation, the electrical dynamics of a three-
phase induction motor can be described in a two-axis coordi-
nates frame [2]. If we choose a stationary reference frame, it is
described as

d
V,=Ri, +—21,,
ds stds dt ds

; d
qu —Rxqu'f‘Eﬂ,qx, (1)

d
O0=Ri, +—A,+0,4,,
rtdr dt dr r ¥ gr

. d
0= erqr + ?d—tﬂ,qr - a)rﬂ“dr .
The first two in (1) are stator circuit equations and the rest are
rotor circuit equations. The relation between fluxes and cur-
rents are given by (2) under the assumption of linear magnetic
circuits.

Ay =Lyiy +L, (G, + id,): Li,+L,i,,
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Among the variables, if we choose rotor fluxes 4, ,4,, and

stator currents 7, .,/ as states, the rotor flux model is given

by (3).
Rotor flux model:
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Electrical motor torque is described by using rotor fluxes as in

(4)

3P L .
Te = 7 ”7 (/’i‘dr qs ﬂ'z[rlu’x) - (4)

Also, if we use stator fluxes instead of rotor fluxes, the stator
flux model is obtained.
Stator flux model:

d
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By using stator fluxes, electrical motor torque can be rewritten
in (6).

3P

T, =7(ﬂ’ds qs /’{’zpld.\) - (6)

e
We assume that all states are available and all parameters are
constant. Among the parameters, stator resistance in addition
to rotor resistance is assumed to be an unknown parameter.
When controlling induction motors, the control outputs are
flux modulus and motor speed, and the control inputs are sta-
tor voltages. The square of flux modulus is described as
=A% + /13, in the rotor flux model or |4 =A% + /1flS
in the stator flux model, and the dynamic of motor speed is
given by (7)

5

i w= Q - -TL . (7)
dt J J
The following addresses some difficulties in deriving a
nonlinear adaptive controller using rotor fluxes. To obtain
control inputs in the feedback linearization control scheme, the
derivatives of control output are needed to the amount of the
relative degree. The derivative of stator flux has stator volt-
ages, but that of rotor flux does not, which can be shown in the
first two equations of (3) and (5) respectively. Therefore, in
the rotor flux model, two times derivative of the flux modulus
is needed, which means that the relative degree is two. How-
ever, in the stator flux model, the relative degree for the flux
modulus is only one, which makes the design of the feedback
linearization controller simple. The above two models are
transformed into a normal form for the designing of the feed-
back linearization controller. The following shows the nonlin-
ear portions including the control input terms in the normal
form. This equation is used to obtain the feedback lineariza-
tion control inputs.
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Nonlinear portion in normal form of the rotor flux model

Y, =F,(x,)+B,(x.)0, +G,(x,,0,)u, (8)

where x, =(iy, i, Ay, 4,.0) . ¥, =(@&,|4,)7,

qr?

0, =(R,,R,R,RR) . u=(V,.,V,) .
Nonlinear portion in normal form of the stator flux model

Y, = F.(x,)+B,(x,)0, + G, (x)u, )

YA‘ = (0)7 ﬂ’\ )T 2

e T
where  x = (g, 0, Ay Ay @),

0, =(R,,R)".

Y, .Y, are the derivatives of control outputs by the relative
degrees, u is the control input and @,,6, are unknown
parameter factors which consist of stator and rotor resistances.
The matrices F,,B,,G,,F,,B,, and G, are given in the
Appendix. In both cases, load torque is assumed to be zero,
since it makes no difference between them. In addition to the
relative degree issue, the rotor flux model has two problems
which are absent in the stator flux model.

® The one is overparameterization, such that unknown pa-
rameter matrix @, has R’ and R,R, aswell as R, and
R,.
® The other is that G, (x,,6,) contains an unknown pa-
rameter R, and cannot be linearly parameterized, which
makes it extremely difficult to design the adaptive control
scheme.

To solve these problems, the time varying state coordinate
transformation depending on the parameter estimate has been
used in [10], which requires a large amount of computation
effort. Another solution is to use the reduced model of an in-
duction motor, where the control inputs are not stator voltages
but stator currents [12][13][18]. However, such a method has
the assumption of ideal current controllers where stator cur-
rents are perfectly controlled by stator voltages. In the case of
the stator flux model, such problems disappear and control
inputs and parameter adaptations laws can be derived straight-
forwardly from (9).

To control motor speed, two control loops are used in this
paper. If the loop gain of the torque controller is relatively so
high that torque can be supposed to be its reference signal in
the speed controller, torque and speed controllers can be de-
signed independently. Torque and flux modulus tracking is
achieved with the adaptation of rotor resistance and stator
resistance in the inner loop and speed tracking is achieved
with the adaptation of load torque in the outer loop. In other
words, the inner loop controller is related with the electrical
modeling of the induction motor as shown in (3), and the outer
loop controller is related with the mechanical dynamics as
shown in (7). Fig. 1 shows the control block diagram.

As a speed controller, a simple adaptive feedback lineariza-
tion control scheme is used to estimate load torque. However,
in this case, the other mechanical parameter, inertia J must be
known. In some applications such as a rolling mill drive sys-
tem, motor inertia may be varied during the process or there
may be time varying load torque which cannot be assumed to

be constant, so it is necessary to design another speed control-
ler. To design the speed controller and the torque controller
independently makes it easy and efficient to modify the over-
all controller. Hence, the independent design approach is
adopted in field-oriented control and also in feedback lineari-
zation control [11].

Inner Loop
7, R: 1
e _res R Vs K

Dror > Speed Torque P ndudion Mechanical

Controller &Flux —F» Motor Dynamics

- Controller, 7

ls . — | V’fl @
ref

Electrical part in inner loop: Mechanical part in outer loop:

. Control outputs: 7, . 4, = A +/135 . Control outputs; @
- Control Inputs; 1%, 17, . Control Input: 7,

. Adaptive Parameters; R, . R, . Adaptive Parameter: 7,

Fig. 1. Control block diagram.

I11. Torque and flux controller design.

Motor torque and square flux modulus are defined as out-
puts to be controlled, stator voltages are defined as control
inputs, and stator resistance and rotor resistance are adaptive
parameters. We assume that both resistances are constant, the
reference signals for torque and square flux modulus are
bounded along with their time derivatives, and all states are
available bounded signals. The stator flux model shown in (5)
is rewritten in matrix form,

= [+ [LOOR, + [3(0OR, + g (X)W, + 8, (%),

. .oar
where x =[A,, Ay igsi,] s

- _ — 0 .
0 A OL j
1 . s x’zA’
N e e R AR bl
1 A, —L,
——w, A +o,1, e
i LO. rVds r da_ LU
_;ds 1 O
" 0 !
fi(0) = _Tids . &)= L . g, ()= 0
- L, s
L 0 L,

(10)

Define control outputs y, and y, as motor torque and
square flux modulus respectively.

3P . .
= Te = T(A‘dqus - /Iqslds) ’

e 42 (a1

ﬂS

Yo =
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Define error variables z,,z, between y,,V, and their
references as

z, =T, -T, rf TN TN s
- |4,

ref =V, _yZJ'cf’ (12)

. and ref denotes

e

where y, =T, ., and y, .. =|ﬂ,’y|wf

the reference values of each variable. The derivatives of z,,
z, are given by (13) using Lie derivatives,

d
'd;zl =Ly +Lpy R+ Ly R+ Ly -V,
+ ng yl : qu _).}I_ref’
d .
_d; 2 Lf~y2 R +Lg1y2 Vd\ +L32y2 qs yZArqf’
3P 1
where Ly, = > { L—(/lf,\+/1?[‘)+zds/1 +lq3/1([s:|
3P L , L,
szyl 2 L L (qs;{‘d&‘ _Ids/lq.s‘)=_—L—Tz——Te’
3P 1 . . |
Lf3yl 2_7.2_(1(1.\']’115 _Ids/lqs):_-L—Te’
3P 1 )
Lgl Yy :7-Z(Laqu —ﬂ'q.s')’
3P 1 .
Lg,';y] _7.Z(Lo'lds ]”d\)
Lf3 y2 = _2(ﬂ’ds'ids + ﬂ‘qsl(p)
Lg| Y, =24,
ngyz =2/1 - (13)

L, h is the Lie derivative of & with respect to /. Determine
state feedback control inputs as follows

I:Val-\}le Layi=Lpyi R, =Ly R +3) . —ci2
Vs _Lf3y2'Rs+j}2_n{f_CZZZ

(14)

L,y, L,y n n

where D=| 97! g2 , R and R are the esti-
Lgl y2 ng y2

mates of R, and R, respectively and c,,c, are positive

constant gains. Now, we check whether D is nonsingular or

not,

detD:z_P[/lqs(Lolq.\ qs)+ﬂ’¢1s(1‘ Izl\ ﬂ'd\)] (]5)

[e3
(15) can be rewritten as (16) using the relations between

stator fluxes and rotor fluxes, ie. L i, —A, =—L—”’/1d,.
r

L
and L _i —ﬂ. =—-—}

olgs qr v
g- L g

which can be easily derived

from (2).

3P IH 3P LI” Py Py
det D=- I (ﬂ’d\ /?’dl + 2‘q\ qr ) = _L_L_ dys ’ dgr
3P L, 7
- Z T dos | Aaar ’ cosa.
(16)
where /idq_\. and /{dqr are the stator ﬂux vector and the rotor

ﬂux vector respectively, that is. A, =(4,.,4,) and

Ay =(Ags A, ). @ is the angle between the stator flux
vector and the rotor flux vector. From (16). D is singular
when the stator flux vector is orthogonal to the rotor flux vec-
tor. However, such a case is physically impossible since leak-
age inductances L, , L, which make the angle o are such
small values [2]. Therefore, D is singular only at the start-

up of the motor.
Define parameter errors as follows.

R =R -R. R =R, —R,. (17)

By applying control input (14) to (13), the error dynamics of
z,,z, arederivedas

dlz z, . |R
— =C /4 L 18
dt Lj Lz} T (t)liR.x} ’ (9

- . L, L.,
where c=| 0 , W)= nh Eshy
0 €2 0 L/3y2

From (12), the etrors z,,z, inevitably occur whenever each
reference changes even when the estimates of both resistances
are true values. So, if we use z,,z, directly for the parame-
ter adaptation, instantaneous fluctuation occurs in the esti-
mates of both resistances. To overcome it, a reference model is
introduced. Define the reference model where unknown pa-
rameters disappear using new states z,,, . Z.; -

dt| z,y Zoum

Define error variables e ,e, between =z, , z, and
Zy - 2oy TESpectively.
€ =Zy =2y, € T2 T Ing- (20)

From (18) and (19), their dynamics is given by (21).

de e - IR
—| "|=C . 21
at LJ Lz}rw (t)[R.l b

Adaptive laws of IAQ,, and IA{\_ are determined as in (22) to
make the error dynamics (21) asymptotically stable.

S Te‘el’
L L

r L2

d ~
_CERr :}/(IL.fzylel :_}/a

? =vu{lpyicei+ Ly, e
(22)

=2y (A iy + Ak, €,

gs " qs

1
=7 ‘L—Te "€
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Theorem 1: If state feedback control is given by (14) and
the parameter adaptation laws are given by (22), then,
i) e,e, €L, ML, and zero tracking errors are achieved,

Al =4, |=0.

ie. lim

==

T, -T,

e_ref

=0, lim
{—x

ref
ii) If the persistent excitation condition is satisfied, i.e.
L'”‘W(I)Wyv(r)dr is positive definite for some T>0 and
every t2>0, then, the parameter errors (R, ,R )=0 is
exponentially stable.
Proof of theorem 1 : i) Define a Lyapunov function
Vy=tet st s Ry LR
2 20 2y, 2y,
where y,,y, are positive real numbers and e, .e, are
defined in (20) and the dynamics are given in (21). The
derivative of Vis

d ~ 1 d »
EVO =-cef _Cze§ +R;4{L./’2y1 e ———R,}
¢ (24)
+13. L,y ee+L,y, -e ———IA?\, .
o sY1é BY2 € v, di o

The parameter adaptation laws for IA?,, and Iﬂi’x as shown in
(22) yield
d

EVO =—ce’ —c,e;. (23)

This guarantees that e, e,, INQ,,, R\_ are bounded and
e,e, €L,. Since R, R  arc assumed to be constant pa-
rameters, R, and R, are also bounded from (17). Matrix
W' (t) contains only bounded signals and it follows that €,
e, are also bounded from (21). From Barbalat’s lemma,

limle,|=0. limle,|=0, (26)
—>x 1>
which implies that
limz, =limz,, =0,limz, =limz,,, =0, (27)
=% 1—>x 1> 1>

because z,,,, Zz,, exponentially converge to zero from
(19), so zero tracking errors of torque and flux modulus are

achieved. |
ii) The proof of the convergence of parameter errors is
shown in [20, pp.367-370]. |

Remark 1 : Now, we check the persistent excitation condi-
tion,

L% 2 Ls 2
272 "¢ 2 e
wowT = L,,LLG L.L, ' (28)
s 2 . : 2
I 4L2 Te 4(ﬂ’d\' Ly + /’{’q.\'lq.\')

If motor torque 7, is zero such as in the steady state with no

€
load torque, the persistent excitation condition cannot be satis-
fied, since J"HIW(T)WT(Z')CI'T is not positive definite. Also,
(22) shows that if motor torque 7, is zero, the update of
rotor resistance does not occur. But if flux is changing in zero

torque region, rotor current exists in rotor circuit, which means

that there is a possibility to estimate rotor resistance without
torque. To use this situation, a new method using a stator cur-
rent estimator is proposed as follows.

We design the estimator of stator currents, /., i, as{(29)
d R, . R _
jlds == L lu’x - I L (L.\'ld.\' —j“dx)
t (=2 r ag
1 . 1 ~
+_L a),ﬂqs — 0,1, +—L Vi +ciy,
o o
d - R, . R, .
:l,;qu == L lq.\‘ - L L (Lxl([.\' _ﬂ“qx)
g r (o3 (29)
1 . 1 >
- L wr /qu +(0,. ld.\' + L Vq.\' + C4 lq.\"
o o
where c,.c, are positive constants and £, , I _ are cur-
3 4 p ad n s gs .

rent errors defined by [, =i, —i,and [ =i —i, re
spectively. This is the same as modeling (5) except that esti-

mated parameters are used and current error terms C;i, .

41, arcadded.
From (10) and (29), error dynamics (21) can be modified as

€ €
e e . R
4 Zl=c 2 +W”(z){~'}, (30)
dt Iu’.\‘ lds‘ R_\-
i i
¢ 0 0 O
, c, 0 0
where, C'=— 5
¢, 0
0 0 0 ¢
[ L_/ZJ’I Lf3 Vi 1
0 Ly
A, —L.i i
WIT )= s stds _ ltds 31
O=| " - G31)
/?'q.y - L.s‘ iq.\' _ iqx
L LI'LO' La i

Adaptive laws for Rr and IA{‘. are designed to make the error
dynamics (30) asymptotically stable.

d ; % ~
—R =——"ALT -e,+(A, —Li )i,
dt 7 Lr Lo_ { ste Vi ( ds s (jA)(,l.\
+ Gy = L )i}
ds __ 7
—R =—L2{T ¢ -2L (A i, +A i )e
dt s La { e 1 o'( ds’ds §s qs) 2 (32)

- ld,\' ldA‘ - lqs lc/.s'} .

Theorem 2 : If state feedback control is given by (14), the
estimates of stator currents are given by (29) and parameter
adaptation laws are given by (32), then

) e.e, iy i €L, NL,, zero tracking errors are

achieved, ie. lim{T, -7,
11—

e _ref

=0, lim
I—x

A,

_l’l

sl | =0

ref
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and the current errors converge to their actual values, i.c.

=0, =0.

hm] Iy
=0 l—)w

ii) If the persistent excitation condition is satisfied, i.e.
LHTW'(I)W'T(T)dT is positive definite for some T>0 and

every ¢>0, then, the parameter errors (kr, INQK) =0 are
exponentially stable.

Proof of theorem 2 : The procedure is the same as in theo-
rem 1. First, define a Lyapunov function as

=y 1z 11

1 1 1
V=—el+—e+—i  +— —R*+ !
2 2 27

2y, 272

RZ

Iqx
(33)

where y,,y, are positive real numbers. Compared to (23),
current error terms ., 1, arc added.
Its derivative is given by

_ 2 2 T2 T2
_tV =018 —Cy€) —Cyly —Cyly

= 1 . \T
+Rr {szyl .el +E{(ﬂ“ds _leds)ld.\'
l d
+( Ay — s,,s),,s} " ,} 34)
= 1.~
+RA‘{L/'3yl € +Lf3y2 2y _TIdS'lds
1 ~ 1 :
-, ———iRY}.
Lo’ e }/2 dt »
Applying adaptive laws (32) to (34) yield (35).
—V=—cel —c,es —cyil —c,i; (35)

Similar to the e proof of theorem 1, this guarantees that e, e, ,
R RY, lds, s are bounded and e, e,, i, i, € LTZ. Since
iy I, are assumed to be bounded signals, W " is also
bounded and it follows that i,, i are bounded from (30).

qs
From Barbalat’s lemma,

lim(7,| =0, Tim|i,,|=0. (36)
> 14)00
The remaining proof for the tracking and parameter estimation
is the same as that of theorem 1.

Remark 2 : Compared to (22), the adaptation laws given
by (32) for R, has additional terms, so the update of R,
will be carried out using current errors even though there does
not exist motor torque. We can see the difference in the persis-

tent excitation condition,

w.w'T :l:Wn W12:|, 37)

Wy Wnp

. 2
— Li TEZ + ﬂ’ds _Lxlds n ﬂ’ Lxlqs i
r LL, LL,

_ _ L 2 A‘ds 5 d _
Wy, =Wy = Ly

L,L;

—Lji, . An—Lg

stgs .

hé

qgs ?

1
wnzzyz?+qiu¢+ﬂ Lyi)+—

stqs

(i +iy). (38)

o o

Even though motor torque 7, is zero, unless flux is constant,
the persistent excitation condition can be satisfied due to the
additional term in (38). However, if flux is constant with zero
torque, which means that rotor currents are zero, i.c.
Ag =L, and A, =L, .
condition is not satisfied, since w,, =w,, =w,, =0. If rotor
currents are absent, any kind of model based adaptation algo-
rithms should not estimate the rotor resistance, because rotor
resistance disappears in the modeling of induction motors,

which is shown by f,(x)=0 in(10).

the persistent excitation

IV. Speed controller design
To estimate load torque, we design a simple adaptive feed-
back linearization controller with the assumption that the iner-
tia J is a known constant, load torque 7, is an unknown
constant, and the reference of speed and its derivative are all
bounded signals. The mechanical dynamics shown in (7) is
rewritten by

iwzﬂuli, (39)
daJ J

where we define motor torque 7, as control input and motor
speed @ as control output respectively. The derivation of the
speed controller is simple, because it is only a 1* order system.
Define output error variable z; as

Z; =0 =0, (40)

where @, is the speed reference. We determine control
input 7, as

T,=Jw,, +T, -J-c,z,, (41)

ref

where ¢ is a positive constant. Then, by applying (41) to
(39), the error dynamics of z; is written by

. T,
Zy==CgZ, —7 5 (42)

where parameter estimation error T, is defined as
T, =T, —T, . Define the reference model where an unknown
variable 7, does not appear

Ziyy =—CsZypy - (43)
Define error variable e, between z; and z;,, as
€ =Z3 " Zypy - (44)
From (42) and (43), its derivative is given by

' TL
¢ ==Cse; = —-. (45)

We design the load torque adaptation law as
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1
—T, =7, — (46)

Theorem 3 : If state feedback control is given by (41), and
the adaptation law of load torque is given in (46), then,

e;el, L, T, €L,,and zero tracking error is achieved,

i.e. limlw — wref‘ =0, In addition, the estimation error of the
1 h

load torque also converges to zero, i.c. llm‘T ‘ 0.
Proof of theorem 3 : Define a Lyapunov function as
1 2 I =
V,=—e; +—T,. 47)
2 2y,

From (45), its derivative is given by

d 1 1 d ..
—V, =—c el + T —e, ——T,}. 48
dt K 5%3 { J 3 }/3 dt [‘} ( )
The load torque adaptation law (46) yields
d
—V =—c el 49
dt > “9

This guarantees that e, 7N", are bounded and e, elL,.
From (45), e, is also bounded. From barbalat’s lemma,
}1m|e3| =0, which means that llm‘z3| = llmlzwl =0, be-
calise z4,, exponentially converges to 'zéro from (43).
Since llm'eal =0 and Jis a positive constant, the estima-
tion error of the load torque T, also converges to zero from
(45). u

In the case that the tracking of speed is only a matter of con-
cern, another controller such as PI may be used as a speed
controller.

V. Simulations

The proposed control algorithm is investigated for the mo-
tor whose data are listed in Table [, the square modulus of flux
|/1S| is set to its rated value 0.21Wb at 0.01sec, and speed
reference starts from 0 to 1800r/min at 1sec. To avoid the sin-
gularity in computing control inputs ¥,V the initial val-
ues of stator voltages V.V, are all set to 0.1v in 10msec.
The load torque is applied at 3sec to the amount of 10Nm. Fig.
2 is the case where all of the parameters are known, Fig. 3 is
the case of —20% initial error in rotor resistance and +50%
initial errors in stator resistance, and Fig. 4 shows the case of
+50% initial error in rotor resistance and —50% error in stator
resistance. The stator current estimator proposed in section 111
is not used yet. In each Fig, (a), (b), (c), (d), (¢), (f), (g), and
(h) show speed @ and its reference @,z > torque T, andits

e
reference T, .., square flux modulus [/1 [and its reference
Ii I load torque T, and its estimate 7, , normalized
R,. normahzed R, torque and that of the reference model,
and square flux modulus and that of the reference model, re-
spectively. Figs (a) and (c) show that decoupling control be-
tween speed and flux is achieved and Figs (b) and (c) show
that motor torque and flux modulus are also controlled inde-
pendently. Fig (d) shows that the estimate of load torque con-

verges to the true value in all cases. Rotor resistance is up-

dated so that the difference between actual torque and that of
reference model, which is shown in (g), converges to zero.
However, Fig (e) shows that rotor resistance can not be up-
dated when motor torque is zero. Fig (f) shows that even
though there does not exist motor torque, the estimate of stator
resistance converges to its true value using flux error e,
shown in (h).

Table 1. Motor Parameters.

Power 3.7 [Kw] L, 2997 [mH ]
R, 031[Q] L, 29.97 [mH ]
R, 0.41[Q]) L, 28.92 [mH ]
- 2
Pole pairs 2 J 0.03 [ kgm~ ]
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Fig. 2. Simulation with known parameters
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Fig. 3. Simulation with +50% initial parameters error
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o —
0 05 ' 15 < 15 3 35 & 45 &
g Toraue meser]

Fig. 4. Simulation with -50% initial parameters error
(R (0)=R *1.5,R(0)=R,*0.5).

To overcome the fact that rotor resistance is not updated when
motor torque does not exist, the proposed stator current estima-
tor is added. Fig. 5 is the simulation of —20% initial error in
rotor resistance and +50% initial errors in stator resistance and
Fig. 6 is the simulations of +50% initial error in rotor resistance
and -50% initial errors in stator resistance. Figs (i), (j), (k) and
(1) show V., iy, V... and [ respectively. Fig. (e) shows
that using the current errors shown in (j) and (1), R, can be
estimated even though there is no electrical torque. Figs (i) and
(k) show that the control inputs, that is, stator voltage V.V, ,
are within their available range.
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Fig. 5. Slmulatlon using a current estimator wnth +50% initial
errors  ( R, (0)=R *0.8, RX(O) =R *15).
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Fig. 6. Simulation using a current estimator w1th -50% initial
errors R, Oy=R, *15, R_\ 0)y=R_*0.5).

V1. Experiments

The proposed adaptive feedback Ilinearization control
scheme is implemented for a 3.7kw induction motor whose
parameters are used in the simulations. The controller consists
of TMS320C40 floating point digital signal processor for the
computation of the nonlinear control, 14bit A/D converter for
current sensing, 12 bit D/A converter for monitoring the inter-
nal variables through an oscilloscope, one RS-232 serial port
for communicating with a PC, a puise counter for measuring
motor speed, and gating driver circuits for PWM inverter.
PWM switching frequency is 2.5kHz, and the sampling time
of the proposed torque and flux controller is 200 pzsec. The
stator currents and motor speed are measured in every sam-
pling time through hall-sensors and an encoder whose resolu-
tion is 1024 pulse rev’, respectively. Because stator flux
measurement is not available, we use the flux observer pro-
posed in [21]. Since we assume that all states are available,
actual parameters are used in the flux observer. To combine
the proposed algorithm with an adaptive flux observer is our
next research goal. Load torque is zero and the speed control-
ler is operated every 3msec. To control the flux modulus, Pl is
used in the outer loop as an additional flux controller, whose
sampling time is the same as that of the speed controller. Fig.
7 shows the block diagram of the experiment set.

220V | l
+ Encoder
3 + Ve 4@ IGBT
! I Inverter
[
5,,5:.5,
! L £ys, Loy
R$232 Gate Driver AD

/A TMS 320C40 | Counter

Osciliestope

Fig. 7. Experiments sef.

Fig. 8 is the case of no initial parameter errors in both re-
sistances, and Fig. 9 is the case of +20% initial error of the
rotor resistance and —50% initial error of the stator resistance
respectively, in which the stator current estimator is not used.
Flux reference is set to its rated value and speed reference is
increased to 1000r/min after flux build-up. The speed refer-
ence ramped to 0.5 sec rising time to guarantee sufficient time
interval when torque exists to satisfy persistent excitation
condition during parameter adaptation. In each Fig, (a) shows
the motor speed @ and flux modulus |Zb\_[,~and (b) shows
the normalized resistance errors of R, and R, respectively.
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Fig (a) shows that the decoupling control between speed and
flux is achieved. Fig. 8 shows that both resistances remain the
initial values, which are actual ones. Fig. 9 shows that both
resistance errors tend to their true values, however, rotor resis-
tance is not updated until the motor speed starts to increase,
which is a similar result to the simulations.
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Fig. 9. Experiment results with 1%, (0)=R,*¥0.8 and
R.(0)=R *15.

Fig. 10 is the case where the estimation of rotor resistance is
performed with the stator current estimator. Although motor
torque is zero, rotor resistance is updated during the change of
flux, since rotor current exists. The parameter convergence
rates are different between simulations and experiments be-
cause adaptive gains ¢,,¢,,C;,C4,7,.7, determined by
trial-error are some different.
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Fig. 10. Experiment results using a stator current estimator
with R (0)=R *0.8 and R (0)=R, *1.5

VIIL Conclusion

The presented adaptive control method based on the stator
flux model has strong merits in that i) the relative degree for
the flux modulus is reduced to one, which makes the control
algorithm simple; ii) control inputs can be determined straight-
forwardly without state-space change of coordinates depend-
ing on parameter estimates; iii) overparameterization disap-
pears, which yields an easy design of adaptive laws for the
parameters. In addition, stator resistance as well as rotor resis-
tance and load torque is also estimated, which has not been
performed in prior works. To solve the problem that rotor
resistance cannot be estimated without motor torque, we de-
sign a stator current estimator which improves the conver-
gence of rotor resistance estimation. From another point of
view, the proposed adaptive feedback linearization controller
for torque and flux modulus can be considered as the current
controller in the field-oriented control. Also, an additional flux
controller such as PI may be used in the outer loop. The effec-
tiveness and performance of the proposed method are verified
by simulations and experiments.

Appendix
The derivations of (8) and (9).
From the induction motor modeling as shown in (3)-(6)
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and the mechanical dynamic equation (7), (8) and (9) can be
computed directly with zero load torque.
Nonlinear portion in normal form of the rotor flux model;

Y, =F (x,)+B,(x,)6, +G,(x,,6,)u, (50)
where
3P L, . ) L,
Fr _ —TTa)r[//{drlds +/1qu(’_\, +L_(/1‘21r +lflr)]
0
3P L, 3P L,
G 2 JL,L, " 2 JLL,
T 2L 2L
- ﬂ’dr .Rr ——Lllxr 'Rr
LrLcr LrLc !
b b 0 0
Br — r_11 r_12 ’
r_22 0 brVZS br_24
v, L, 3P, ;
brAll :_7(Z—+LO_L£). 2Lr (ﬂ’drlll.\‘ —ﬂqud‘_)’
1 3PL, . .
br_lz = _I : 2—1#_(/1&1113' - ﬂ’quds)’
2L, , .
br722 = L a)r (;{’drqu _//Lquds)v
LZ
br_23 :(1+ L - )(ﬂ’zzir +/131r)+Lm(13\ +llfs)
LZ
- (3 Lm + ﬁ)(ﬂdr ids + /1‘” iq.s' )’
2L, . .
r 24 < _E(idrlds + /?’quqs)'

Nonlinear portion in normal form of the stator flux model;

YS = FS (xs ) + B.s' (xx )gr + Gs (x,y )Zl (51)
3P . . 1 ., 2
where FS — Ewr [/’{‘dxlds +/1qsqu ——Lj(ﬂ’ds +ﬂ’qs )] ,
0

3PL, . . 3P , _
B = —m(idxlqs _lqi'lds) - (ﬂ’dslqs —ﬂ'qsldx)

=2 Agdg + A0 ) 0

3P 3P
— (L i, —A,) - L i, —Ay
Gx — 2JLG ( Ulq.s q,\) 2JLG ( o'ld_s d\)
24, 24,
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Nomenclature
Vi (V) (Q)-axis stator voltages
Iy (i) d(q)-axis stator currents
iy (i o) d(q)-axis rotor currents
Au(Ay,)  d(g)-axis stator flux
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Ay (A d(q)-axis rotor flux

P Number of pole pairs

qr )

a) Mechanical motor speed

@, Electrical motor speed [= P@ |

R, Rotor resistance

R, Stator resistance

L, Stator leakage inductance

L, Rotor leakage inductance

L, Mutual inductance between stator and rotor

L, Stator self-inductance [= L, + L, ]

L, Rotor self-inductance [= L, + L, ]

T, Motor torque

T, Load torque

J Moment of inertia of motor

[ﬂ.x Modulus square of stator flux [ = A% + A7, ]

A, Modulus square of rotor flux [= A, + /13[,. ]
. . L\'Lr B Lfﬂ

L, Stator transient inductance [ = ‘L—]
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