• Title/Summary/Keyword: electrical length

Search Result 2,448, Processing Time 0.027 seconds

Analysis of hydrogenation effects on Low temperature Poly-Si Thin Film Transistor (저온에서 제작된 다결정 실리콘 박막 트랜지스터의 수소화 효과에 대한 분석)

  • Choi, K.Y.;Kim, Y.S.;Lee, S.K.;Lee, M.C.;Han, M.K.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1289-1291
    • /
    • 1993
  • The hydrogenation effects on characteristics of polycrystalline silicon thin film transistors(poly-Si TFT's) of which the channel length varies from $2.5{\mu}m\;to\;20{\mu}m$ and poly-Si layer thickness is 50, 100, and 150 nm was investigated. After 1 hr hydrogenation annealing by PECVD, the threshold voltage shift decreased dependent on the channel length, but channel width may not alter the threshold voltage shift. In addition to channel length, the active poly-Si layer thickness may be an important parameter on hydrogenation effects, while gate poly-Si thickness may do not influence on the characteristics of TFT's. Considering our experimental results, we propose that channel length and active poly-Si layer thickness may be a key parameters of hydrogenation of poly-Si TFT's.

  • PDF

Influence of Channel Length on the Performance of Poly-Si Thin-Film Transistors (다결정 실리콘 박막 트랜지스터의 성능에 대한 채널 길이의 영향)

  • 이정석;장창덕;백도현;이용재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.450-453
    • /
    • 1999
  • In this paper, The relationship between device performance and channel length(1.5-50$\mu$m) in polysilicon thin-film transistors fabricated by SPC technology was Investigated by measuring electric Properties such as 1-V characteristics, field effect mobility, threshold voltage, subthreshold swing, and trap density in grain boundary with channel length. The drain current at ON-state increases with decreasing channel length due to increase of the drain field, while OFF-state current (leakage current) is independent of channel length. The field effect mobility decrease with channel length due to decreasing carrier life time by the avalanche injection of the carrier at high drain field. The threshold voltage and subthreshold swing decrease with channel length, and then increase in 1.5 $\mu$m increase of increase of trap density in grain boundary by impact ionization.

  • PDF

The Improvement of Continuation Power Flow System Including the Algorithm of Practical Step Length Selection (실용적인 스텝크기 선택 알고리듬을 고려한 연속조류계산 시스템의 개발)

  • Song, Hwa-Chang;Lee, Byong-Jun;Kwon, Se-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.190-196
    • /
    • 1999
  • Continuation power flow has been developed to remove the ill-condition problem caused by singularity of power flow Jacobian at and near at steady-state voltage instability point in conventional power flow. Continuation power flow consists of predictor and corrector. In prddictor, the direction vector at the resent solution is caluculated and the initial guess of next solution is determined at the distance of step length. The selection of step length is a very important part, since computational speed and convergence performance are both greatly affected by the choice of the step length. This paper presents the practical step length selection algorithm using the reactive power generation sensitivith. In numulation, the proposed algorithm is compared with step length selection algorithm using TVI(tangent vector index).

  • PDF

The Electronic Structure of Carbon Nanotubes with Finite Length : Tight Binding Theory

  • Moon, Won-Ha;Kim, Won-Woo;Hwang, Ho-Jung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.23-29
    • /
    • 2002
  • The electronic properties of Carbon Nanotube(CNT) are currently the focus of considerable interest. In this paper, the electronic properties of finite length effect in CNT for the carbon nano-scale device is presented. To Calculate the electronic properties of CNT, Empirical potential method (the extended Brenner potential for C-Si-H) for carbon and Tight Binding molecular dynamic (TBMD) simulation are used. As a result of study, we have known that the value of the band gap decreases with increasing the length of the tube. The energy band gap of (6,6) armchair CNT have the ranges between 0.3 eV and 2.5 eV. Also, our results are in agreements with the result of the other computational techniques.

Correlation between Electrical Conductivity and Shielding Effectiveness of Cementitous Composites according to length and volume fraction of steel fiber (강섬유의 길이 및 혼입률에 따른 시멘트 복합체의 전기전도도와 차폐효과의 상관관계)

  • Lee, Yae-Chan;Kim, Gyu-Yong;Eu, Ha-Min;Choi, Byung-Cheol;Sasui, Sasui;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.213-214
    • /
    • 2022
  • The purpose of this study is to compare and analyze the effect of the length and volume fraction of smooth steel fiber on the electrical conductivity and shielding effectiveness of cementitious composites. As the length and volume fraction of the fiber increase, the movement of electrons becomes active and the formation of a conductive path becomes advantageous, thereby increasing electrical conductivity. Accordingly, the electrical conductivity and the shielding effectiveness showed a very close relationship. Thereafter, it is judged that research is needed to increase the shielding effect.

  • PDF

Threshold Voltage Modeling of Double-Gate MOSFETs by Considering Barrier Lowering

  • Choi, Byung-Kil;Park, Ki-Heung;Han, Kyoung-Rok;Kim, Young-Min;Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.2
    • /
    • pp.76-81
    • /
    • 2007
  • Threshold voltage ($V_{th}$) modeling of doublegate (DG) MOSFETs was performed, for the first time, by considering barrier lowering in the short channel devices. As the gate length of DG MOSFETs scales down, the overlapped charge-sharing length ($x_h$) in the channel which is related to the barrier lowering becomes very important. A fitting parameter ${\delta}_w$ was introduced semi-empirically with the fin body width and body doping concentration for higher accuracy. The $V_{th}$ model predicted well the $V_{th}$ behavior with fin body thickness, body doping concentration, and gate length. Our compact model makes an accurate $V_{th}$ prediction of DG devices with the gate length up to 20-nm.

Electrical Properties with Varying CuPc Thickness and Channel Length of the Field-effect Transistor (CuPc 두께 변화 및 채널 길이 변화에 따른 전계 효과 트랜지스터의 전기적 특성 연구)

  • Lee, Ho-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.47-52
    • /
    • 2007
  • Organic field-effect transistors (OFETS) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with varying channel length. The CuPc FET device was made a top-contact type and the channel length was a $100\;{\mu}m,\;50\;{\mu}m,\;40\;{\mu}m,\;and\;30\;{\mu}m$ and the channel width was a fixed at 3 mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with varying channel length (L) and we calculated the effective mobility. Also, we measured a capacitance-voltage (C-V) by applied bias voltage with varying frequency at 43, 100, 1000 Hz.

Experimental Study on The Propagation Characteristics of Lightning Surge According to Variation of Wire Length (배선 길이 변화에 따른 뇌서지 전파 특성에 대한 실험 연구)

  • Seo Ho-Joon;Rhie Dong-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.12
    • /
    • pp.616-619
    • /
    • 2004
  • Electrical circuits with semiconductor are very weak against lightning surge. The surge protective devices for electronic circuit and AC power lines are becoming more widely used. To achieve effective method of surge protection, there are needs for correlation between lightning surge and indoor wire length or installation height of indoor wire. The aim of this present work is to investigate the propagation characteristics of lightning surge according to variation of wire length. As a consequence, the maximum voltage at the end of the open wire in proportion to length of indoor wire. Therefore this result may be raw data for establishment of surge protection system.

Coordinate and Length of Straight Transmission Line Minimally connecting X-Y axis via a Specific Point (특정지점을 경유하며 X-Y 축을 최단거리로 연결하는 전선로의 길이 산정)

  • Lee, Sang-Joong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.9
    • /
    • pp.65-70
    • /
    • 2015
  • Minimal line length enables low-cost construction of the transmission lines and low-loss transportation of electric power. This paper presents a derivation to determine the coordinate and length of the straight line that minimally connects two perpendicular lines x-axis and y-axis via a specific point, using the optimization technique. The author shows a formula to obtain the minimal length, which is represented by the cube root of the coordinate given by the specific point. Case studies have been also discussed to prove the optimal solutions derived by the proposed formula.

Real-time Footstep Planning and Following for Navigation of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2142-2148
    • /
    • 2015
  • This paper proposes novel real-time footstep planning and following methods for the navigation of humanoid robots. A footstep command is defined by a walking direction and step lengths for footstep planning. The walking direction is determined by a uni-vector field navigation method, and the allowable yawing range caused by hardware limitation is considered. The lateral step length is determined to avoid collisions between the two legs while walking. The sagittal step length is modified by a binary search algorithm when collision occurs between the robot body and obstacles in a narrow space. If the robot body still collides with obstacles despite the modification of the sagittal step length, the lateral step length is shifted at the next footstep. For footstep following, a walking pattern generator based on a 3-D linear inverted pendulum model is utilized, which can generate modifiable walking patterns using the zero-moment point variation scheme. Therefore, it enables a humanoid robot to follow the footstep command planned for each footstep. The effectiveness of the proposed method is verified through simulation and experiment.