• Title/Summary/Keyword: electrical installation

Search Result 6,502, Processing Time 0.036 seconds

Development & Practical Installation of 400kV XLPE 1C${\times}$2500SQ Enamel coating Power Cable Accessories (400kV Enameled Cu 1C${\times}$2500SQ 케이블 접속재 개발 및 실선로 적용)

  • Kim, Young-Tek;Kim, Hyun-Ju;Kim, Han-Hwa;Park, Jeong-Ki;Han, Du-Hyun;Choi, Man-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1614-1616
    • /
    • 2011
  • 지중송전라인에서 전압등급의 상승은 선로손실을 줄이면서 밀집된 전력수요에 대응하거나 특별히 고전압 수요를 맞추기 위한 것으로 이것은 XLPE Cable의 제조기술이 향상되면서 지속적으로 진행되어온 초고압송전계통의 일반적 추세이다. 이러한 경향으로 해외에서는 케이블 도체의 송전용량을 증대시킬 수 있는 방법으로 케이블 도체에 에나멜 코팅을 하여 집합을 한다. 그러므로써 기존 케이블에서 발생되는 표피현상 및 근접효과에 의한 AC 저항 요소를 줄여 요구하는 전류용량을 기존 비소선절연 케이블에 비해 더 많이 송전할 수 있다. 하지만, 소선절연 케이블이 전류 용량을 증대 시킬 수 있는 장점은 있으나 접속재의 경우 도체의 에나멜 코팅을 제거해야 하는 문제점이 있다. 당사는 에나멜 코팅을 제거하는 방법을 개발 완료함으로써 본 접속재의 개발을 앞당길 수 있었다. 당사는 쿠웨이트 400kV MEW/C/3931 Project에 400kV XLPE 1C${\times}$2500SQ 소선절연 초고압송전라인을 적용하였는데 본고에서는 여기에 적용된 400kV XLPE 1C${\times}$25000SQ 소전절연 케이블 부속재의 신뢰성을 높이기 위한 설계방법, 시험 및 시공에 대하여 요약하였다.

  • PDF

Study on the installation for DAS(Distribution Automation System) which the Grounding Fault Detection is possible in Non-Grounding System (비접지계통에서 지락고장검출이 가능한 배전자동화시스템 구축)

  • Park, Hak-Yeol;Kim, Ju-Seong;Seol, Ieel-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1_3
    • /
    • 2009
  • 국내 내륙 전체 배전계통은 "22.9kV-Y 중성선 다중접지방식"으로 일원화하여 운영 중에 있으나 도서 섬지역은 자체 내연력 발전 설비를 갖추고 380V-Y로 발전하여 $6.6kV-{\Delta}$로 승압 후 전력을 공급하고 있다. 현재 한전은 설비용량 200kW이상 38개 도서에서 비접지 계통으로 운영 중에 있다. KEPCO와 KDN은 비접지계통($6.6kV-{\Delta}$)으로 운영중인 도서 중 전북지사 부안지점 관내 위도에 시범운영을 통해서 실선로에서 비접지 1선 지락 고장 검출여부 검증을 시행하였다. 시범운영에는 배전자동화 시스템 주장치 1식, mFRTU 12대를 개폐기와 같이 설치하였는데, mFRTU에는 독창적이고 상용화 가능한 "비접지 지락고장검출 알고리즘" 개발하여 탑재하였으며 1선 지락고장을 발생시켜 mFRTU가 고장선로와 고장지점을 정확하게 검출하는지 여부를 검증하였다. 이번에 비접지계통 실선로에서 지락고장을 완벽하게 검출한 가장 큰 의의는 국내 및 해외 최초로 비접지 지락고장검출을 성공하였다는 것입니다. 본 논문에서는 비접지로 운영중인 도서지역에 배전자동화시스템 기반으로 지락고장검출하는 기능을 상용화하여 운영중인 시스템에 대한 내용이다. 이번에 구축한 배전자동화시스템은 비접지계통에 알맞도록 개발된 자동화용 개폐기와mFRTU에 지락고장검출 알고리즘을 기능 구현하였다. 선로에 1선지락 고장발생시 mFRTU가 고장선로, 고장구간 및 고장상 등을 판단하고 상위 주장치에 전송한다. 주장치는 고장정보를 HMI 단선도에 고장지점을 표시하여 종합적으로 감시제어 할 수 있는 시스템이다.

  • PDF

Introduction of KEPCO's distribution class SFCL fabricated for verification test (실증시험용 배전급 초전도 한류기의 특성 평가 및 운전 시험)

  • Yim, Seong-Woo;Park, Chung-Ryul;Yu, Seung-Duck;Kim, Hye-Rim;Hyun, Ok-Bae;Park, Kwon-Bae;Sim, Jung-Wook;Lee, Kyoung-Ho;Oh, Ill-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.294_295
    • /
    • 2009
  • Superconducting fault current limiter (SFCL) is an power device of a novel concept. While SFCLs generate no ohmic loss during the operation carrying normal currents, they can limit fault currents very fast making large impedance by their quench characteristics. In 2006, KEPCO has developed a distribution class hybrid type SFCL by a collaborative research project with LS industrial systems. The SFCL has merits in practical and economical points of view. In the SFCL, the superconductor just plays a role of a fault detector and the current limiting is completed by the other current limiting element made of normal metals throu호 the line commutation. As a result, the required amounts of superconductors can be reduced considerably. Consequently, the hybrid SFCL can be fabricated with small size and cost, maintaining perfect current limiting performance. Currently, KEPCO is carrying out a research project at Gochang power test center for the purpose of the verification test of the 22.9 kV/ 630 A class SFCL for the practical application in real grid. Through the project, a long term operational test and fault current test will be done. In this paper, the back ground of development and installation of the SFCL will be explained and the operation plan of the SFCL for the verification test is also introduced.

  • PDF

Development of Heating Device Using Concentrator Solar Cells (집광형 태양전지를 이용한 난방장치 개발)

  • Lee, Dong Il;Baek, Seung Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.49-56
    • /
    • 2014
  • In this study, the generation efficiency of the limited area of a concentrator solar cell was increased by using a solar concentrator and a tracking device. Heat generated by the solar cell was collected using a thermal absorber for supplying hot water or heating. Thus, the concentrator solar cell system provided electricity and heat simultaneously. Tracking of the sun by detecting the sun's position, repositioning of heating device towards the east after sunset, and shutting down of system after sunset were successfully implemented using an illuminance sensor (CdS) and Simulink, a commercial software package. We performed parametric analysis of the velocity, fin installation, and entrance location with respect to the operating temperature of the concentrator solar cell. A heat transfer simulation model was developed for comparing the actual temperature profiles of the concentrator solar cell and thermal absorber, and good agreement was found between the results of the simulations and the experiments.

Simultaneous water and energy saving of wet cooling towers, modeling for a sample building

  • Ataei, Abtin;Choi, Jun-Ki;Hamidzadeh, Zeinab;Bagheri, Navid
    • Advances in environmental research
    • /
    • v.4 no.3
    • /
    • pp.173-181
    • /
    • 2015
  • This article outlines a case study of water and energy savings in a typical building through a modelling process and analysis of simultaneous water-energy saving measures. Wet cooling towers are one of the most important equipments in buildings with a considerable amount of water and energy consumption. A variety of methods are provided to reduce water and energy consumption in these facilities. In this paper, thorough the modeling of a typical building, water and energy consumption are measured. Then, After application of modern methods known to be effective in saving water and energy, including the ozone treatment for cooling towers and shade installation for windows, i.e. fins and overhangs, the amount of water and energy saving are compared with the base case using the Simergy model. The annual water consumption of the building, by more than 50% reduction, has been reached to 500 cubic meters from 1024 cubic meters. The annual electric energy consumption has been decreased from 405,178 kWh to 340,944 kWh, which is about 16%. After modeling, monthly peak of electrical energy consumption of 49,428 has dropped to 40,562 kWh. The reduction of 18% in the monthly peak can largely reduce the expenses of electricity consumption at peak.

Development of outage-free installation method and equipments for underground power distribution system (지중배전선로 무정전 공법의 최적화를 위한 장비 개발)

  • Yu, K.Y.;Joo, J.M.;Lee, Y.S.;Kim, Y.M.;Kang, N.K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.122-124
    • /
    • 2005
  • Underground distribution system is a trend due to the successive development of metropolitan area and satellite cities and the environment of the commercial and residential areas. The high quality of electricity, which is related with the minimal outage duration time due to the maintenance work for the underground distribution line, is mandatory. Hence, the construction method and tools for the outage-free maintenance construction have been required for underground distribution system. So far, all the efforts for outage-free maintenance for the underground distribution have been limited only to the survey for foreign countries situation and the theoretical provision; thus, It is required to develop the various construction method and the application tools. Differently from the aerial line, the construction of the underground cable is complicated and the insulation distance between conductor and shield should be maintained in loadmaking/breaking operation, though the apparatus connected with cable is a deadfront type. Also since the apparatus is installed above ground, by-pass of faulted area at busy area needs a variety of high technologies. Therefore, in this these, the authors introduce the development status of the loadbreak connectors, connection facilities, outage-free maintenance system for secondary side, a secondary auxiliary bushing and additional tools so that there can be more progress on this field.

  • PDF

A Study on the comparison of Infill Technology between Korea long life Apartment Mock up House and Japan KSI experimental House (국내 장수명 공동주택 Mock-up House와 일본 KSI 실험주택 인필 요소기술 비교 연구)

  • Choi, Young Ho;Kim, Shin;Kim, Sung Wan
    • KIEAE Journal
    • /
    • v.8 no.4
    • /
    • pp.63-69
    • /
    • 2008
  • The thesis is a comparative analysis of Infill Technologies between Korea's long-life Mock-up House, a study driven by 'Durability and Flexibility of Long-life Housing Technology Development' of R&D, and Japan's KSI experimental house, the major example of Japan's long-llfe housing. In terms of the domestic Mock-up House, a system of building the floor first was applied. The floor material of each housing unit required a development of dry heating component that is partially substitutable in order to avoid conflict with the finishing. Also, a development of a floor system that can counteract against the construction inaccuracy was required. In the Case of an outer wall, need to make the wall with the chassis. In the case of ceiling, need to develop the double ceiling system which is good for sound insulation. Also, in comparison to KSI experimental house in Japan, it would require to develop a wiring system of the ceiling which can react to the movement of the wall. Especially, to assure the flexible nature of an internal wall, it would desperately require the research and development of the products related to components and flexible system of mechanical/electrical/communication parts as well as supporting institutionalized system for this development. Furthermore, for KSI experimental house in Japan, it would be necessary to formulate a construction manual as well as a systematic and practical planning guide to invent a new interface rule which will secure simplicity of assembling, dismantling, installation and replacement of architectural components for which research development is quite insignificant at the moment. This effort will have to continue to give a solid direction for better application of such reference manual during construction and development of long life span apartment by public sector as well as private corporations.

Design of Access Fixture for a Large Vacuum Chamber (대형 열진공챔버용 내부 위성체 근접 치구 설계)

  • Lee, Sang-Hoon;Cho, Hyok-Jin;Seo, Hee-Jun;Moon, Guee-Won
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • Thermal vacuum test should be carried out to verify the performance of the S/C on the ground under the simulated space environment. KARI already completed the construction of a Large Thermal Vacuum Chamber(LTVC) with 8 m of diameter and 10 m of length dimension. LTVC is for the purpose of performing the orbital environment test for large Space Craft(S/C). Inside LTVC, S/C is much smaller than LTVC. For the function test of S/C during the thermal vacuum test, the S/C has to be connected to Electrical Ground Support Equipment(EGSE) which includes several cable and RF wave guide inside LTVC. Also, MLI should be installed on S/C before the test. But it is very difficult to access the S/C inside big LTVC. To solve the accessibility to the S/C inside LTVC, KARI designed an access fixture. This fixture provides easy access to the any S/C thus can help safe installation and saving time for the related work inside LTVC. This paper describes whole process for the design of the access fixture.

  • PDF

The Emission and Characteristics Measurement of Electron Beam and Basis Construction for Education Usage (전자빔 인출 및 빔 계측과 교육 활용을 위한 기반구축)

  • Lee, Dong-Hoon
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.257-264
    • /
    • 2007
  • The MM22 microtron has used as a cancer therapy machine from Nov. 1986 to Feb. 2006. This machine was moved and installed to a radiation research center to use as an education and research tool from treatment machine because of aging of MM22 microtron. In this paper, for extracting the electron beam from microtron, operation principle of the microtron, system characteristics of each module, and pulse structures were reviewed. The beam extraction and measurement were performed after measuring pulses of each major module and extraction trials in the beam line. After finishing the movement of MM22 microtron, the 30mA target current in the case of 10 MV X-ray beam was extracted and the beam flatness of radiation distribution was acquired within 3% error ratio after 100 MU was irradiated on X-omatV Film at SSD 100 cm and field size $10{\times}10cm^2$. As a result, the microtron movement and new installation was performed with success.

  • PDF

Comparison of Performance Analysis of the Ventilated and Non-­ventilated CIGS BIPV Units (환기 유무에 따른 CIGS BIPV 커튼월 유닛의 성능 비교 분석)

  • Kim, Sang-Myung;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.47-57
    • /
    • 2017
  • CIGS thin film solar cells are technically suitable for BIPV applications than regularly used crystalline silicon solar cells. Particularly, CIGS PV has lower temperature coefficient than crystalline silicon PV, thus decrease in power generation is lowered in CIGS PV. Moreover, CIGS PV can decrease shading loss when applied to the BIPV system, and the total annual power generation is higher than crystalline silicon. However, there are few studies on the installation factors affecting the performance of BIPV system with CIGS module. In this study, BIPV curtain wall unit with CIGS PV module was designed. To prevent increase of temperature of CIGS PV module by solar radiation, ventilation was considered at the backside of the unit. The thermal specification and electrical performance of CIGS PV of the ventilated unit was analyzed experimentally. Non-ventilated unit was also investigated and compared with ventilated unit. The results showed that the average CIGS temperature of the ventilated curtain wall unit was $6.8^{\circ}C$ lower than non-ventilated type and the efficiency and power generation performance of ventilated CIGS PV on average was, respectively, about 6% and 5.8% higher than the non-ventilated type.