• Title/Summary/Keyword: electric shock current

Search Result 117, Processing Time 0.02 seconds

Integrated Management System to Improve Photovoltaic Operation Efficiency (태양광발전 운영효율 향상을 위한 통합관리시스템)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.113-118
    • /
    • 2019
  • A solar power plant is a facility that produces electricity. As the risk of fire and electric shock accidents is diversified, the risk of workers, surrounding people, and facilities is increased, preventing safety accidents and promptly responding to safety accidents Is emerging. In light of the necessity of such development, it is necessary to develop a solar power generation management system that can diagnose and maintain the problems of the power generation system in real time by developing technologies for collecting and analyzing the data produced by the solar power generation system As a result, the utilization rate and the maintenance cost can be reduced. In order to do this, it is necessary to accurately predict the solar power generation amount in the present state, to diagnose the abnormality of the current power generation state and to grasp the abnormal position, and to use the model considering economical efficiency when the abnormal position is grasped, And the time and other information should be provided.

Development of overhead distribution line diagnosis system program (가공 배전선로 진단시스템 프로그램 개발)

  • Dong Hyun Chung;Deok Jin Lee
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.81-87
    • /
    • 2023
  • In this paper, accidents in high-voltage overhead distribution lines, which provide stable power supply in the power system, cause inconvenience in life and disruption of production of companies. 22.9 [kV] high-voltage overhead power distribution lines aim to improve reliability and stability, such as damage caused by rain, snow, wind, etc., or electric shock prevention. Therefore, in order to prevent wire disconnection accidents due to deterioration of electrical conductivity or tensile strength due to corrosion of overhead distribution lines, it is necessary to prevent unexpected accidents in the future through regular inspection and repair. In order to diagnose deterioration due to corrosion of distribution lines, a diagnostic system (measuring instrument) is installed on the wires to monitor the condition of the wires. The manager on the ground receives the measured data through ZigBee wireless communication, controls the diagnosis system through the diagnosis system program, and grasps the condition of the overhead distribution line through the measured data and photographed photos, and predicts the life of the wire along with the visual inspection method. developed a program.

A Study on How to Lower the Grounding Impedance by Needles-typed Grounding Rods (접지침봉에 의한 접지임피던스를 낮추는 방안 연구)

  • Park, Sung-Yeol
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.19-28
    • /
    • 2022
  • Purpose: One of the methods for preventing disasters such as fire, explosion, and electric shock caused by electricity is to perform grounding. In case of the grounding current includes a frequency component having a high, it is preferable to measure grounding impedance rather than grounding resistance. This study proposes countermeasures to reduce grounding impedance to suppress an ground potential rise due to a grounding current having a frequency component of several kHz or more. Method: General grounding rods and needles-typed grounding rods were buried in the ground, and grounding resistance and grounding impedance were measured, respectively. The characteristics of grounding impedance according to frequency were identified. Result: There was little difference in the measurement results of the grounding resistance between general grounding rods and needles-typed grounding rods. In a frequency range lower than 62.5kHz, there was little difference in the measurement results of the grounding resistance between general grounding rods and needles-typed grounding rods. In a frequency range higher than 62.5kHz, the grounding impedance of needles-typed grounding rods was reduced by about 15% than the grounding impedance of general grounding rods. Conclusion: In the commercial frequency domain, it is effective to connect several grounding rods (common grounding) to lower the grounding resistance value. In the frequency domain of several kHz or more, it is expected that needles-typed grounding rods can effectively reduce the ground potential rise due to the grounding current.

Soft Plasma Flash X-ray Generator Utilizing a Vacuum Discharge Capillary

  • Sato, Eiichi;Hayasi, Yasuomi;Usuki, Tatsumi;Sato, Koetsu;Takayama, Kazuyoshi;Ido, Hideaki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.400-403
    • /
    • 2002
  • The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments were primarily performed in order to generate line spectra such as x-ray lasers. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -10.8 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6 ${\mu}$m aluminum filter were less than 30 ${\mu}$s, and we detected the aluminum characteristic x-ray intensity using a 6.8 ${\mu}$m aluminum filter. In the spectrum measurement, two sets of aluminum and titanium electrodes were employed, and we observed multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. In the case where the titanium electrode was employed, the line number decreased with corresponding decreases in the capillary length. Compared with incoherent visible light, these rays from the capillary were diffracted and diffused greatly after passing through two slits.

  • PDF

Study on the Estimation of Long Life Cycle and Reliability Tests for Epoxy Insulation Busway System (에폭시 박막 절연형 버스웨이 시스템의 장기 수명 및 신뢰성 평가에 관한 연구)

  • Jang, Dong-Uk;Park, Seong-Hee;Lee, Kang-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.261-268
    • /
    • 2018
  • The use of electric cable was limited due to the installation time and large space as the increase of power demand and load quantity in side line. In order to solve these problems, the application of busway system which can supply the large current was increasing. But it was lack of methods of performance tests to evaluate the reliability and results of test for busway system. In this paper, we presented items to evaluate the reliability test for epoxy coated busway system with reference to IEC 61349-6. In addition, we proposed items to evaluate the reliability and long term life cycle test for the epoxy coated busway system. The combined acceleration deterioration test that reflects actual conditions of the survey as much as possible was conducted considering both thermal and electrical stresses. The deterioration condition was selected to satisfy fifty years life expectation and the insulation performance verification test of the busway system confirmed the long term life prediction. Furthermore, as test items for reliability assessment of compliance with the environment for the use of temperature, humidity and load current where busway system was installed, thermal overload test, water immersion test, cold shock temperature test and thermal cycle test were performed. And we examined changes in characteristics and abnormality after tests. From results, the test items presented to evaluate performance and reliability of the epoxy insulated busway system were confirmed to be appropriate in this paper, and the performance of the product was also confirmed to be excellent for reliability tests.

A Study on the Characteristics Assessment and Fabrication of Distribution Board according to KEMC Standards (KEMC 규정에 의한 분전반의 제작 및 특성 평가에 관한 연구)

  • Lee, Byung-Seol;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.63-72
    • /
    • 2017
  • This study fabricated a low-voltage 10 circuit distribution board based on the KEMC (Korea Electrical Manufacturers Cooperative) 2102-610 standard and performed a characteristics assessment of the developed 10 circuit distribution board to secure product stability. The developed 10 circuit distribution board is designed to have the characteristics of insulation materials, as well as resistance to corrosion ultraviolet radiation and mechanical impact. The developed distribution board is fabricated to have an appropriate protection class of enclosure, electric shock prevention and protection circuits, switchgear and its components, internal electrical circuits and connectors, external conduct terminal, insulation characteristics, temperature rise test, heat resistance, etc. The developed 10 circuit distribution board consists of a single phase circuit and 3-phase circuits. It is possible to measure in real time the leakage current generated from the load distribution line by installing a sensor module at the load side of each of the branched switchgears. In addition, it is possible to increase a circuit according to the use and purpose of the load and to also manage and check the load in real time. Temperature rise tests were performed on the developed 10 circuit distribution board at 18 places including the inlet connection, main circuit and distribution circuit bus bars and bus bar supports, etc. The highest temperature of $65.3^{\circ}C$ was measured at the R-Phase of the connection of the MCCB power supply for the branch circuit bus bar and a temperature rise of $61.6^{\circ}C$ was measured at the T-Phase of the load side. When applying thermal stress to an MCCB for 6 hours at $180^{\circ}C$ using a heat resistant experimental device, it was found that the actuator lever was transformed and moved in the tripped state.

Development of the Standard Model of a Stated Period Check and Precise Safety Diagnosis in the Research Lab for Prevention to Electrical Accidents (전기사고방지를 위한 연구실험실 정기점검/정밀안전진단 표준모델개발)

  • Lee, Dong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.858-864
    • /
    • 2011
  • There is no standard model for a Stated Period Check and a Precise Safety Diagnosis to remove electric fire and shock in the university Lab and institute. Especially, the research for the Stated Period Check and the Precise Safety Diagnosis of the Lab related to electrical field is very weak currently, and it is very necessary to build a detail safety plan. This paper informs the specific standard guideline of the safety check list, method and equipment and it shows the way to evaluate safety grade too. This paper also provides the information of R&D process through the analysis of electrical safety check list of ordinary R&D Lab. It shows a new detail guideline to R&D Lab, and the new guideline removes existing problem and deliver the effective standard model to each R&D Lab. The standard model developed in this research adopts the clear guideline of each check list for the electrical environment of current R&D Lab. This standard model can be applied for every R&D Lab to detect routine safety check and detail safety check immediately. This Research will generally improve not only the effective safety check, but also the safety level for R&D Lab to prevent the electrical accidents.