• Title/Summary/Keyword: electric power system

Search Result 5,840, Processing Time 0.041 seconds

Regenerated Power in Fixed voltage DC Electric Power Supply System (정전압 DC 급전시스템에서의 회생전력)

  • 정상기;이병송;정락교;박성혁;김국진
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.343-349
    • /
    • 2001
  • In this study we examined the method to estimate numerically the amount of the regenerated power and the excess regenerated power produced in the DC electric power supply system for the urban light rail transit system. And their economic feasibilities are also studied. For this study DC electric power supply system is simulated and the numerical analysis of the regenerated power and the excess regenerated power are conducted. The study result on the sample system shows that the facility to consume the excess regenerated power or the inverting equipment to reuse the excess regenerated power in the electric substation is feasible economically.

  • PDF

Development of Comparative Verification System for Reliability Evaluation of Distribution Line Load Prediction Model (배전 선로 부하예측 모델의 신뢰성 평가를 위한 비교 검증 시스템)

  • Lee, Haesung;Lee, Byung-Sung;Moon, Sang-Keun;Kim, Junhyuk;Lee, Hyeseon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.115-123
    • /
    • 2021
  • Through machine learning-based load prediction, it is possible to prevent excessive power generation or unnecessary economic investment by estimating the appropriate amount of facility investment in consideration of the load that will increase in the future or providing basic data for policy establishment to distribute the maximum load. However, in order to secure the reliability of the developed load prediction model in the field, the performance comparison verification between the distribution line load prediction models must be preceded, but a comparative performance verification system between the distribution line load prediction models has not yet been established. As a result, it is not possible to accurately determine the performance excellence of the load prediction model because it is not possible to easily determine the likelihood between the load prediction models. In this paper, we developed a reliability verification system for load prediction models including a method of comparing and verifying the performance reliability between machine learning-based load prediction models that were not previously considered, verification process, and verification result visualization methods. Through the developed load prediction model reliability verification system, the objectivity of the load prediction model performance verification can be improved, and the field application utilization of an excellent load prediction model can be increased.

Direction for Development of Energy Regeneration Device for DC Electric Railway System (DC전철구간의 에너지회생장치 개발 방향)

  • Kim, Yong-Ki;Bae, Chang-Han;Han, Moon-Seob;Yang, Young-Chul;Jang, Su-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.804-808
    • /
    • 2007
  • when electric traction system used DC 1500V runs on decline of rail road track and slows down, Dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. This paper described a DC electric railway system, which can generate the excessive DC power form DC bus line to AC source in substation for traction system. The proposed regeneration inverter system for DC traction can be used as both an inverter and an active power filter(APF). As a regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation. In addition, electric traction system products harmonic current and voltage distortion and reactive power because power converter is used so regeneration inverter normally runs such as active power filter(APF) for improving power quality. From the viewpoint of both power capacity and switching losses, the system is designed on the basis of three phase PWM inverters and composed of parallel inverters, output transformers, and an LCL filter.

  • PDF

Relation between Induced Voltage of Rail and Feeding Line of Wireless Power Transfer System for Railway Application (철도용 무선전력전송시스템의 급전선로와 레일유기전압의 관계)

  • Kim, JaeHee;Park, Chan-Bae;Jung, Shin-Myung;Lee, Seung-Hwan;Lee, Byung-Song;Lee, Jun-Ho;Lee, Su-Gil
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.228-232
    • /
    • 2014
  • The magnetic field generated by the feeding line of a wireless power transfer system induces voltage on the rail of a railway system. The induced voltage of the rail can have a bad influence on the track circuit and on safety. This paper simulated three feeding lines to study the relation between the feeding lines and the induced voltage of the rail; it also proposed magnetic field distribution of the feeding line to reduce the induced voltage.

A Study on Using Large-Scale Energy Storage Systems in Automatic Generation Control Operations of the Energy Management Systems

  • Im, Jihoon;Lim, Gunpyo;Park, Chanwook;Choi, Yohan;Kim, Seunghan;Chang, Byunghoon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.121-125
    • /
    • 2016
  • KEPCO has completed the installation and demonstration of a 52 MW battery energy storage system (BESS) for frequency regulation. Especially, 24 MW BESS is for Automatic Generation Control (AGC) in Shin-Yongin substation. Recently, KEPCO Research Institute has operated it connected to EMS of KPX. This paper discussed the operation strategy of EMS through a study on using 24 MW BESS in AGC operation and propose the improvement of AGC target. It is expected that this paper helps a safe and reliable operation and control of ESS for AGC through its continuous update.

An ICCP Application Method for an Error Decrease of the Power Control Communication System (전력제어 통신 시스템의 에러 감소를 위한 ICCP 적용 방안)

  • 김종빈;정래성
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.9
    • /
    • pp.349-357
    • /
    • 2003
  • Because of capacity of the electric power equipment grew larger and the electric power system was complicated, it was required a protocol to process data without the errors in order to supply the high quality and stable electric power. However, HDLC and TCP/IP communication protocol using between Seoul EMS and Kwangju RCC (or between RCC and SCC) is decreasing reliability by the delay of speed and the occurrence of errors. In this paper, we applied ICCP(Inter-Control Center Communication Protocol) communication protocol in order to improve them and implemented an electric power communication system for remote control of the electric power equipment. Also, we modified program for error correction and implemented the system using the most suitable BLT. The errors were more decreased in case of ICCP protocol than HDLC protocol and TCP/IP protocol applied to the electric power communication system.

Deve lopment of Simulator System for Microgrids with Renewable Energy Sources

  • Jeon, Jin-Hong;Kim, Seul-Ki;Cho, Chang-Hee;Ahn, Jong-Bo;Kim, Eung-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.409-413
    • /
    • 2006
  • This paper deals with the design and testing of a simulator system for microgrids with distributed generations. This system is composed of a Real Time Digital Simulator (RTDS) and a power amplifier. The RTDS parts are operated for real time simulation for the microgrid model and the distributed generation source model. The power amplifiers are operated fur amplification of the RTDS's simulated output signal, which is a node voltage of the microgrid and distributed generation source. In this paper, we represent an RTDS system design, specification and test results of a power amplifier and simulation results of a PV (Photovoltaic) system and wind turbine system. The proposed system is applicable for development and performance testing of a PCS (Power Conversion System) for renewable energy sources.

The Design Efforts of the Intelligent & Integrated Gateway System for the Automation Systems in Electric Power Companies (전력자동화서비스를 위한 지능형 통합 게이트웨이 설계)

  • Kim, Myong-Soo;Hyun, Duck-Hwa;Cho, Seon-Gu
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2448-2450
    • /
    • 2002
  • In recent years, it has been a worldwide trend that many power utilities gave their attention to develop and operate their power plants, substation and distribution systems. Following this trend, KEPCO(Korea Electric Power Corporation) has developed many electric automation systems with various communication networks. It has been natural that the automation systems are just focused on to remote devices when they come to be designed. But, we have to shirt the focus to the automation system itself. There are many problems in maintenance and integration of the automation systems. When an automation system can't control some remote devices, there is no way to get why and which part(Master, Network, Master-side Modem or Remote-side modem, Remote Device, etc.) of the system has problems. Moreover the system just directly links to another automation system. If the system has to link many systems, it needs the linker per each systems. So, we need a new concept to resolve that problems, and develop the Intelligent and Integrated Gateway(IIG) for the automation systems for easy maintenance and integration.

  • PDF

The Modeling of Power System with PEM fuel cell (연료전지 전력 시스템의 모델링)

  • Han, K.H.;Lee, H.J.;Lee, N.Y.;Jang, H.Y.;Lee, B.Y.;Baek, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.239-241
    • /
    • 2008
  • A powered system with fuel cell is regarded as a high current and low voltage source. Effects of the loads on the electrical power source are important to optimize the integrated power system. The design parameters of the system should be chosen by taking into account the characteristics of the fuel cell, so the costs of the power system at given operating conditions can be reduced. Furthermore, the dynamics characteristic of the system is crucial to acquire performance in applications, particularly interactions between loads and the fuel cell system. Currently, no integrated simulation has been approached to analyze interrelated effects. Therefore, the dynamic models of power conversion system with a PEM fuel cell that includes the PEM fuel cell stack, DC/DC converter and associated controls is developed. Electric lads for the system are derived by using a power theory that separates a load current into active, reactive, distortion or a mixed current component. Dependency of the DC capacitor on the loads are analyzed.

  • PDF

Co-Simulation Technology Development with Electric Power Steering System and Full Vehicle (전동 조향 장치와 차량의 동시 시뮬레이션 기술 개발)

  • 장봉춘;소상균
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.94-100
    • /
    • 2004
  • Most power steering systems obtain the power by a hydraulic mechanism. Therefore, it consumes more energy because the oil power should be sustained all the times. Recently, to solve this problem the electric power system has been developed and become widely equipped in passenger vehicles. In this research the simulation integration technique for an electric power steering system with MATLAB/SIMULINK and a full vehicle model with ADAMS has been developed. A full vehicle model interacted with electronic control unit algorithm is concurrently simulated with an impulsive steering wheel torque input. The dynamic responses of vehicle chassis and steering system are evaluated. This integrated method allows engineers to reduce the prototype testing cost and to shorten the developing period.