• Title/Summary/Keyword: electric field crowding

Search Result 7, Processing Time 0.013 seconds

Reduction of Current Crowding in InGaN-based Blue Light-Emitting Diodes by Modifying Metal Contact Geometry

  • Kim, Garam;Kim, Jang Hyun;Park, Euyhwan;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.588-593
    • /
    • 2014
  • Current crowding problem can worsen the internal quantum efficiency and the negative-voltage ESD of InGaN-based LEDs. In this paper, by using photon emission microscope and thermal emission microscope measurement, we confirmed that the electric field and the current of the InGaN-based LED sample are crowded in specific regions where the distance between p-type metal contact and n-type metal contact is shorter than other regions. To improve this crowding problem of electric field and current, modified metal contact geometry having uniform distance between the two contacts is proposed and verified by a numerical simulation. It is confirmed that the proposed structure shows better current spreading, resulting in higher internal quantum efficiency and reduced reverse leakage current.

4H-SiC Curvature VDMOSFET with 3.3kV Breakdown Voltage (3.3kV 항복 전압을 갖는 4H-SiC Curvature VDMOSFET)

  • Kim, Tae-Hong;Jeong, Chung-Bu;Goh, Jin-Young;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.916-921
    • /
    • 2018
  • In this paper, we analyzed the power MOSFET devices for high voltage and high current operation. 4H-SiC was used instead of Si to improve the static characteristics of the device. Since 4H-SiC has a high critical electric field due to wide band gap, 4H-SiC is more advantageous than Si in high voltage and high current operation. In the conventional VDMOSFET structure using 4H-SiC, the breakdown voltage is limited due to the electric field crowding at the edge of the p-base region. Therefore, in this paper, we propose a Curvature VDMOSFET structure that improves the breakdown voltage and the static characteristics by reducing the electric field crowding by giving curvature to the edge of the p-base region. The static characteristics of conventional VDMOSFET and curvature VDMOSFET are compared and analyzed through TCAD simulation. The Curvature VDMOSFET has a breakdown voltage of 68.6% higher than that of the conventional structure without increasing on-resistance.

An experimental study on plaque removal effect through the acting types of the electric toothbrushes (전동칫솔모의 작동형태에 따른 치면세균막 제거율에 관한 실험연구)

  • Lee, Cheon-Hee;Ahn, Sun-Ha;Jang, Young-Ho
    • Journal of Korean society of Dental Hygiene
    • /
    • v.11 no.4
    • /
    • pp.465-474
    • /
    • 2011
  • Objectives : The removal of most reliable mechanical dental plaque that is to say tooth brushing was generalized to control of dental plaque, many oral health goods have also developed due to the effect differences followed by individual habit. The electric toothbrush have studied and developed widely as major field of study that electric toothbrush having various moving phase was sold and developed at the market. Methods : Accordingly author studied about selling electric toothbrushes shape (vibration type, ultra-sonic minuteness vibration type, semi rotation type) to raise the efficiency after comparing to the moving them that total 8 groups classified by poor tooth models for example normal set of tooth, crowding tooth, bracket attached tooth, prosthetic status etc. and executed plaque removal effect on the tooth through comparing experiment. Results : The removal rate of artificial plaque on the tooth was improved in proportion to the increase of tooth brushing time(p<0.05). The ultra-sonic minuteness vibration and semi rotation type was superior to toothbrush of vibration type comparing to the removal rate of plaque on the tooth(p<0.05). Conclusions : The electric toothbrush of supersonic minuteness vibration and semi rotation type can be recommended most of tooth types regardless of oral tooth setting status for example, normal set of tooth, crowding tooth, bracket attached tooth, porcelain tooth.

A New Trench Termination for Power Semiconductor Devices (전력소자를 위한 새로운 홈구조 터미네이션)

  • Min, W.G.;Park, N.C.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1337-1339
    • /
    • 1998
  • The trench termination scheme is introduced for high voltage devices. The curvature of the depletion region at field limiting ring is critical factor to determine the breakdown voltage. The smooth curvature of the depletion junction alleviate the electric field crowding effect around this region. In the trench field limiting ring, the radius of the depletion region is smaller than conventional field limiting ring, but the distance between every trench is spaced small enough to punchthrough before initiation of local breakdown. The trench field limiting ring on silicon can ne formed by RIE followed by oxidation on side wall surface of the trench, and polysilicon filling. The combined termination of this trench floating field ring and field plate have been designed and analyzed. The breakdown simulation by 2-dimensional TCAD shows that the cylindrical junction breakdown voltage for substrate doping might be 99 percent of the ideal breakdwon voltage for substrate doping concentration of $3\times10^{14}cm^{-3}$ with about $100{\mu}m$ of lateral termination width.

  • PDF

An SOI LDMOS with Graded Gate and Recessed Source (경사진 게이트를 갖는 Recessed Source SOI LDMOS)

  • Kim, Chung-Hee;Choi, Yearn-Ik;Chung, Sang-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1451-1453
    • /
    • 2001
  • An SOI(Silicon-On-Insulator) LD(Lateral Double-diffused)MOS with graded gate and recessed source is proposed. The proposed structure can increase the breakdown voltage by reducing the electric field crowding at the edge of gate. Simulation results by TSUPREM4 and MEDICI have shown that the breakdown voltage of proposed device was found to be 52 V while that of conventional device was 45 V. At the same breakdown voltage of 45 V, the on-resistance of the LDMOS with graded gate and recessed source was 14.4 % lower than that of conventional structure.

  • PDF

Electromigration Characteristics in PSG/SiO$_2$ Passivated Al-l%Si Thin Film Interconnections

  • Kim, Jin-Young
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.7 no.2
    • /
    • pp.39-44
    • /
    • 2003
  • Recent ULSI and multilevel structure trends in microelectronic devices minimize the line width down to a quarter micron and below, which results in the high current densities in thin film interconnections. Under high current densities, an EM(electromigration) induced failure becomes one of the critical problems in a microelectronic device. This study is to improve thin film interconnection materials by investigating the EM characteristics in PSG(phosphosilicate glass)/SiO$_2$ passivated Al-l%Si thin film interconnections. Straight line patterns, wide and narrow link type patterns, and meander type patterns, etc. were fabricated by a standard photholithography process. The main results are as follows. The current crowding effects result in the decrease of the lifetime in thin film interconnections. The electric field effects accelerate the decrease of lifetime in the double-layered thin film interconnections. The lifetime of interconnections also depends upon the current conditions of P.D.C.(pulsed direct current) frequencies applied at the same duty factor.

  • PDF

4H-SiC Schottky Barrier Diode Using Double-Field-Plate Technique (이중 필드플레이트 기술을 이용한 4H-SiC 쇼트키 장벽 다이오드)

  • Kim, Taewan;Sim, Seulgi;Cho, Dooyoung;Kim, Kwangsoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.11-16
    • /
    • 2016
  • Silicon carbide (SiC) has received significant attention over the past decade because of its high-voltage, high-frequency and high-thermal reliability in devices compared to silicon. Especially, a SiC Schottky barrier diode (SBD) is most often used in low-voltage switching and low on-resistance power applications. However, electric field crowding at the contact edge of SBDs induces early breakdown and limits their performance. To overcome this problem, several edge termination techniques have been proposed. This paper proposes an improvement in the breakdown voltage using a double-field-plate structure in SiC SBDs, and we design, simulate, fabricate, and characterize the proposed structure. The measurement results of the proposed structure, demonstrate that the breakdown voltage can be improved by 38% while maintaining its forward characteristics without any change in the size of the anode contact junction region.