• Title/Summary/Keyword: elasto-plastic material model

Search Result 113, Processing Time 0.026 seconds

Finite Element Analysis for Plastic Large Deformation and Anisotropic Damage

  • Nho, In-Sik;Yim, Sahng-Jun
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.111-124
    • /
    • 1995
  • An improved analysis model for material nonlinearity induced by elasto-plastic deformation and damage including a large strain response was proposed. The elasto-plastic-damage constitutive model based on the continuum damage mechanics approach was adopted to overcome limitations of the conventional plastic analysis theory. It can manage the anisotropic tonsorial damage evolved during the time-independent plastic deformation process of materials. Updated Lagrangian finite element formulation for elasto-plastic damage coupling problems including large deformation, large rotation and large strain problems was completed to develop a numerical model which can predict all kinds of structural nonlinearities and damage rationally. Finally a finite element analysis code for two-dimensional plane problems was developed and the applicability and validity of the numerical model was investigated through some numerical examples. Calculations showed reasonable results in both geometrical nonlinear problems due to large deformation and material nonlinearity including the damage effect.

  • PDF

Finite Element Analysis of Elasto-Plastic Large Deformation considering the Isotropic Damage (the 1st Report) -Development of Elasto-Plastic Damage Constitutive Model- (등방성 손상을 고려한 탄소성 대변형 문제의 유한요소해석(제1보) -탄소성 손상 구성방정식 개발-)

  • 노인식
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.70-75
    • /
    • 2000
  • In this paper a new constitutive model for ductile materials was proposed. This model can describe the material degradation due to the evolution of isotropic damage during elasto-platic deformation. The plastic flow rule was derived under the framework of thermodynamic approach of continuum damage mechanics(CDM) in which plastic strain hardening parameters and isotropic damage were taken as thermodynamic state variables. And the process to determine material constants for constitutive model using an experimental data was presented.

  • PDF

Investigation of seismic responses of reactor vessel and internals for beyond-design basis earthquake using elasto-plastic time history analysis

  • Lee, Sang-Jeong;Lee, Eun-ho;Lee, Changkyun;Park, No-Cheol;Choi, Youngin;Oh, Changsik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.988-1003
    • /
    • 2021
  • Existing elastic analysis methods cannot be adhered to in order to assess the structural integrity of a reactor vessel and internals for a beyond design basis earthquake. Elasto-plastic analysis methods are required, and the factors that affect the elasto-plastic behavior of reactor materials should be taken into account. In this study, a material behavior model was developed that considers the irradiation embrittlement effect, which affects the elasto-plastic behavior of the reactor material. This was used to perform the elasto-plastic time history analyses of the reactor vessel and its internals for beyond design basis earthquake. For this investigation, appropriate beyond design basis earthquakes and reliable finite element models were used. Based on the analysis results, consideration was given to the load reduction effect and the margin change. These were transferred to the internals due to the plastic deformation of the reactor vessel.

Development of Elastic-Plastic Fracture Analysis Program for Structural Elements under an Impact Loadings (충격하중을 받는 구조부재의 탄소성 파괴해석 프로그램 개발)

  • K.S. Kim;J.B. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.61-71
    • /
    • 1998
  • This paper describes a dynamic fracture behaviors of structural elements under elastic or elasto-plastic stress waves in two dimensional space. The governing equation of this problem has the type of hyperbolic partial differential equation, which consists of the equation of motions and incremental elasto-plastic constitutive equations. To solve this problem we introduce Zwas' method which is based on the finite difference method. Additionally, in order to deal with the dynamic behavior of elasto-plastic problems, an elasto-plastic loading path in the stress space is proposed to model the plastic yield phenomenon. Based on the result of this computation, the dynamic stress intensity factor at the crack tip of an elastic material is calculated, and the time history of a plastic zone of a elasto-plastic material is to be shown.

  • PDF

Finite Element Analysis for Plastic Large Deformation and Anisotropic Damage (소성 대변형 및 이방성 손상의 유한요소해석)

  • I.S. Nho;S.J. Yim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.145-156
    • /
    • 1993
  • An improved analysis model for material nonlinearity induced by elasto-plastic deformation and damage including large strain response was proposed. The elasto-plastic-damage constitutive model based on the continuum damage mechanics approach was adopted to overcome limitations of the conventional plastic theory, which can manage the anisotropic tonsorial damages evolved during time-independent plastic deformation process of materials. Updated Lagrangian finite element formulation for elasto-plastic damage coupling problem including large deformation, large rotation and large strain problems was completed to develop a numerical model which can predict all kinds of structural nonlinearities and damage rationally. Finally, a finite element analysis code for the 2-dimensional plane problem was developed and the applicability and validity of the numerical model was investigated through some numerial examples. Calculations showed reasonable results in both geometrical nonlinear problem due to large deformation and material nonlinearity including the damage effect.

  • PDF

An Analytical Study on the Elasto-Plastic Behavior of Reinforced Concrete Structure under Monotonic & Cyclic Load (단조 증가 및 반복 하중을 받는 철근 콘크리트 구조물의 탄소성 거동에 대한 해석적 연구)

  • 김화중;박정민;마은희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.131-138
    • /
    • 1993
  • To analysis machanical behavior for RC frame under monotonic & Cyclic load, it is needed to investigate elasto-plastic behavior for steel & concrete. Therefore, in this study, we idealized material model(steel and concrete) to take into account elasto-plastic, limit state, and developed structural analysis program that consider complex non-linearity. We investigated simple beam and portal frame under cyclic & monotonic loading, so we confirmed the propriety.

  • PDF

Numerical Analysis of Responses of a Elasto-plastic Tube under Kerosene-air Mixture Detonation (케로신-공기 혼합물의 비정상연소 모델과 탄소성 관의 동적 거동 수치해석)

  • Lee, Younghun;Gwak, Min-cheol;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.169-172
    • /
    • 2015
  • This paper presents a numerical investigation on kerosene-air mixture detonation and behaviors of thermal elasto-plstic thin metal tube under detonation loading based on multi-material analysis. The detonation loading is modeled by the kerosene-air mixture detonation which is compared with CJ condition and experimental cell size. And the thermal softening effect on elasto-plstic model of metal tube is indicated by different dynamic response of detonation loaded tube in various temperature and tube thickness.

  • PDF

Analysis of 2-Dimensional Elasto-Plastic Stress by a Time-Discontinuous Variational Integrator of Hamiltonian (해밀토니안의 시간 불연속 변분적분기를 이용한 2차원 탄소성 응력파 해석)

  • Chol, S.S.;Huh, H.;Park, K.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.263-266
    • /
    • 2008
  • This paper is concerned with the analysis of elasto-plastic stress waves in a mode I semi-infinite cracked solid subjected to Heaviside pulse load. This study adopts a time-discontinuous variational integrator based on Hamiltonian in order to reduce the numerical dispersive and dissipative errors. This also utilizes an integration scheme of the constitutive model with 2nd-order accuracy which is formulated on the strain space for a rate and temperature dependent material model. Finite element analyses of elasto-plastic stress waves are carried out in order to compare the accuracy between a conventional Galerkin method and the time- discontinuous variational integrator.

  • PDF

Iterative global-local approach to consider the local effects in dynamic analysis of beams

  • Erkmen, R. Emre;Afnani, Ashkan
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.501-522
    • /
    • 2017
  • This paper introduces a numerical procedure to incorporate elasto-plastic local deformation effects in the dynamic analysis of beams. The appealing feature is that simple beam type finite elements can be used for the global model which needs not to be altered by the localized elasto-plastic deformations. An overlapping local sophisticated 2D membrane model replaces the internal forces of the beam elements in the predefined region where the localized deformations take place. An iterative coupling technique is used to perform this replacement. Comparisons with full membrane analysis are provided in order to illustrate the accuracy and efficiency of the method developed herein. In this study, the membrane formulation is able to capture the elasto-plastic material behaviour based on the von Misses yield criterion and the associated flow rule for plane stress. The Newmark time integration method is adopted for the step-by-step dynamic analysis.

A New Algorithm for the Integration of Thermal-Elasto-Plastic Constitutive Equation (열탄소성 구성방정식 적분을 위한 새로운 알고리즘)

  • 이동욱;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1455-1464
    • /
    • 1994
  • A new and efficient algorithm for the integration of the thermal-elasto-plastic constitutive equation is proposed. While it falls into the category of the return mapping method, the algorithm adopts the three point approximation of plastic corrector within one time increment step. The results of its application to a von Mises-type thermal-elasto-plastic model with combined hardening and temperature-dependent material properties show that the accurate iso-error maps are obtained for both angular and radial errors. The accuracy achieved is because the predicted stress increment in a single step calculation follows the exact value closely not only at the end of the step but also through the whole path. Also, the comparison of the computational time for the new and other algorithms shows that the new one is very efficient.