• 제목/요약/키워드: elastic plastic deformation

검색결과 481건 처리시간 0.036초

단일 숏 충돌에서의 잔류응력 유일해를 위한 2차원 유한요소해석 모델 (A 2D FE Model for a Unique Residual Stress in Single Shot Impact)

  • 김태형;이형일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.183-188
    • /
    • 2007
  • In this paper, we propose a 2D-FE model in single impact with combined physical factors to obtain a unique residual stress by shot peening. Applied physical parameters include elastic-plastic deformation of shot ball, material damping coefficients, strain rate, dynamic friction coefficients. Single impact FE model consists of 2D axisymmetric elements. The FE model with combined factors showed converged and unique distributions of surface stress, maximum compressive residual stress and deformation depth. Further, in contrast to the FE models with rigid shot and elastic deformable shot, FE model with plastic deformable shot produces residual stresses very close to experimental solutions by X-ray diffraction. We therefore validated the 2D FE model with combined peeing factors and plastic deformable shot. This FE model will be a base of the 3D FE model for residual stresses by multi-impact shot peening.

  • PDF

강부재의 대변형 예측을 위한 3차원 탄소성 유한변위해석의 정식화에 대한 비교연구 (A Comparative Study on Formulation of Three-Dimensional Elastic-Plastic Finite Deformation Analysis for Prediction Large Deflection)

  • 장갑철;장경호
    • 한국공간구조학회논문집
    • /
    • 제6권4호
    • /
    • pp.53-61
    • /
    • 2006
  • 본 연구에서는 임의의 반복하중 작용시 강구조물에 발생하는 대변형 및 반복소성거동을 정확히 예측하기 위하여 유한변위이론과 반복소성이력모델을 적용한 3차원 탄소성 유한요소 해석기법을 개발하였다. 반복소성이력모델은 강재의 단조재하실험 및 반복하중실험 결과에 기초하여 정식화되었다. 개발된 해석기법의 정도는 Bilinear모델 및 미소변위이론을 적용한 해석기법 및 실험결과와 비교하여 검증하였다. 본 연구에서 개발한 유한변위이론과 반복소성이력모델을 적용한 3차원 유한요소 해석기법이 임의의 반복하중을 받는 원형강교각의 대변형 및 반복소성거동을 정확히 예측할 수 있음을 알 수 있었다.

  • PDF

반도체용 박막재료의 열응력-변형 특성에 미치는 passivation 층의 영향 분석 (Effects of passivation layer on the thermal deformation behavior of metal film used in semiconductor devices)

  • 최호성;이광렬;권동일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.732-734
    • /
    • 1998
  • Metal thin films such as aluminum have been used as interconnects in semiconductor device. Recently, these materials are applied to structural materials in microsensors and microactuators. In this study, we evaluate deformation and strength behavior of aluminum alloy film. Three layer model for thermal deformation of multilayered thin film material is introduced and applied to Si/Al(1%Si)/$SiO_2$ system. Based on beam bending theory and concept of bending strain. elastic and elastic/plastic thermal deformation behaviors of multilayered materials can be estimated. In the case of plastic deformation of ductile layer, strain rate equations based on deformation mechanism map are employed for describe the stress relaxation effect. To experimentally examine deformation of multilayered thin film materials, in-situ laser scanning method is used to measure curvature of specimens during heating and cooling. The thickness of $SiO_2$ layer is varied to estimate third-layer effect of thermal deformation of metal films, and its effect on deformation behavior are discussed.

  • PDF

평판용접에 관한 평면변형 열탄소성 해석 (The Plane-Deformation Thermal Elasto-Plastic Analysis During Welding of Plate)

  • 방한서;한길영
    • 한국해양공학회지
    • /
    • 제8권1호
    • /
    • pp.33-40
    • /
    • 1994
  • Welding of structure produces welding residual stresses which influence buckling strength, brittle fracture strength and cold crack on the weld parts. Therefore, it is very important to accurately analyze the residual stress before welding in order to guarantee the safety of weldment. If the weld length is long enough compared to the thickness and the breadth of plate, thermal and mechanical behaviors in the middle portion of the plate are assumed to be uniform along the thickness direction(z-axis). Thus, the following conditions(so-called plane deformation) can be assumed for the plate except near its end;1) distributions of stress and strain are independent on the z-axis;2) plane normal to z-axis before deformation remains plane during and after deformation. In this paper, plane-deformation thermal elasto-plastic problem is formulated by being based on the finite element method. Moreover special regards and paid to the fact that material properties in elastic and plastic region are temperature-dependence. And the method to solve the plane-deformation thermal elasto-plastic problem is shown by using the incremental technique. From the results of analysis, the characterisics of distribution of welding residual stress and plastic strain with the production mechanism are clarified.

  • PDF

비정규 높이분포를 가진 3차원 거친 표면의 탄.소성접촉해석 (The Elastic-Plastic Contact Analysis of 3D Rough Surface of Nongaussian Height Distribution)

  • 김태완;구영필;조용주
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.374-381
    • /
    • 2001
  • Surface roughness plays a significant role in friction, wear, and lubrication in machine components. Most engineering surfaces have tile nogaussian height distrubution. So, in this study, elastic-plastic contact simulations are conducted for not only gaussian surfaces but also nongaussian surfaces. Nongaussian rough surface considering the kurtosis is generated numerically. The contact simulation model takes into account the plastic deformation behaviors of asperities by setting a celing on their contact pressure at material hardness value. It will be shown that the performace variables such as real contact area fraction, plastic area fraction and average gap are sensitive to the characteristics of surface geometry according to kurtosis.

  • PDF

Exact thermoelastoplastic analysis of FGM rotating hollow disks in a linear elastic-fully plastic condition

  • Nadia Alavi;Mohammad Zamani Nejad;Amin Hadi;Anahita Nikeghbalyan
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.377-389
    • /
    • 2024
  • In the present study, thermoelsatoplastic stresses and displacement for rotating hollow disks made of functionally graded materials (FGMs) has been investigated. The linear elastic-fully plastic condition is considered. The material properties except Poisson's ratio are assumed to vary in the radial direction as a power-law function. The heat conduction equation for the one-dimensional problem in cylindrical coordinates is used to obtain temperature distribution in the disk. The plastic model is based on the Tresca yield criterion and its associated flow rules under the assumption of perfectly plastic material behavior. Exact solutions of field equations for elastic and plastic deformations are obtained. It is shown that the elastoplastic response of the functionally graded (FG) disk is affected notably by the radial variation of material properties. It is also shown that, depending on material properties and disk dimensions, different modes of plastic deformation may occur.

Stress wave propagation in 1-D and 2-D media using Smooth Particle Hydrodynamics method

  • Liu, Z.S.;Swaddiwudhipong, S.;Koh, C.G.
    • Structural Engineering and Mechanics
    • /
    • 제14권4호
    • /
    • pp.455-472
    • /
    • 2002
  • The paper involves the study on the elastic and elasto-plastic stress wave propagation in the 1-D and 2-D solid media. The Smooth Particle Hydrodynamics equations governing the elastic and elasto-plastic large deformation dynamic response of solid structures are presented. The proposed additional stress points are introduced in the formulation to mitigate the tensile instability inherent in the SPH approach. Both incremental rate approach and leap-frog algorithm for time integration are introduced and the new solution algorithm is developed and implemented. Two examples on stress wave propagation in aluminium bar and 2-D elasto-plastic steel plate are included. Results from the proposed SPH approach are compared with available analytical values and finite element solutions. The comparison illustrates that the stress wave propagation problems can be effectively solved by the proposed SPH method. The study shows that the SPH simulation is a reliable and robust tool and can be used with confidence to treat transient dynamics such as linear and non-linear transient stress wave propagation problems.

베어링-축 조립체에서 축의 셰이크다운에 관한 연구 (Shakedown Analysis of Shaft in Bearing-Shaft Assembly)

  • 박흥근;박진무;오윤찬
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1740-1747
    • /
    • 2000
  • Under repeated rolling, initial plastic deformation introduces residual stresses which render the steady cyclic state purely elastic. This is called the process of shakedown. Many studies have been done about the shakedown in semi-infinite half space using calculated Hertizian pressure. In this paper shakedown processes in a shaft are studied by finite element analyses of a two dimensional(plane strain) model with elastic-linear-kinematic-hardening-plastic material subjected to repeated, frictionless rolling contact. Symmetric and non-symmetric pressure distributions are obtained using a simplified model of the bearing-shaft assembly. The rolling contact is simulated by repeatedly translating both pressure distributions along the surface of the shaft. By the influence of the non-symmetric pressure, larger residual radial tensile stress is generated in the immediate subsurface layer, which may make a crack propagate and, the subsurface undergoes a zigzag plastic deformation during the shakedown process, which may lead to a crack initiation.

Buckling of aboveground oil storage tanks under internal pressure

  • Yoshida, Shoichi
    • Steel and Composite Structures
    • /
    • 제1권1호
    • /
    • pp.131-144
    • /
    • 2001
  • Overpressurization can occur due to the ignition of flammable vapors existing inside aboveground oil storage tanks. Such accidents could happen more frequently than other types of accident. In the tank design, when the internal pressure increases, the sidewall-to-roof joint is expected to fail before failure occurs in the sidewall-to-bottom joint. This design concept is the socalled "frangible roof joint" introduced in API Standard 650. The major failure mode is bifurcation buckling in this case. This paper presents the bifurcation buckling pressures in both joints under internal pressure. Elastic and elastic-plastic axisymmetric shell finite element analysis was performed involving large deformation in the prebuckling state. Results show that API Standard 650 does not evaluate the frangible roof joint design conservatively in small diameter tanks.

PSD를 이용한 혼합모드 하중하에서 탄소성 파괴인성평가에 관한 실험적인 연구 (An Experimental Study on the Evaluaiton of Elastic-Plastic Fracture Toughness under Mixed Mode I-II-III Loading Using the Optical PSD)

  • 김희송;이춘재
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1263-1274
    • /
    • 1996
  • In this paper, as elastic-plastic fracture toughness test under mixed mode loading was proposed using a single edge-cracked specimen subjected to bending moment(M), shearing force(F), and twisting moment(T). The J-integral of a crack in the specimen is expressed in the form J=$J_I$+ $J_II$$J_III$, where $J_I$, $J_II$ and $J_III$ are the components of mode I, mode II and mode III deformation, respectively. $J_I$, $J_II$ and $J_III$ can be estimated from M-$\theta$ ($\theta$;crack opening angle), F-U(U; crack shear displacement) and T-$\alpha$ ($\alpha$;crack twisting angle). In order to obtain the the M<-TEX>$\theta$, F-U and T-$\alpha$ diagram inreal time, a new deformaiton gage for mixed mode loading was proposed using the optical position sensing device(PSD). The elastic-plastic fracture toughness test was carried out with an aluminum alloy. The loading apparatus was designed and manufactured for this experiment. For the loading condition of the crack initatio in the mixed mode, the MMT -3(mode I+ mode II+ mode III) has the lowest values out of the all specimens. This implies that MMT-3 is possible of the crackinitation at lower load, if the specimen acts on together with the torque under the same loading condition. An elastic-plastic fracture toughness test using the PSD brings a successful experimentation in measuring the crack deformation(mode I+ mode II+ mode III).