• 제목/요약/키워드: elastic half-plane

검색결과 55건 처리시간 0.02초

체적 적분방정식법을 이용한, 다수의 함유체를 포함한 반무한 고체에서의 탄성해석 (Elastic Analysis of a Half-Plane Containing Multiple Inclusions Using Volume Integral Equation Method)

  • 이정기;구덕영
    • 대한기계학회논문집A
    • /
    • 제32권2호
    • /
    • pp.148-161
    • /
    • 2008
  • A volume integral equation method (VIEM) is used to calculate the plane elastostatic field in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions subject to remote loading. A detailed analysis of stress field at the interface between the matrix and the central inclusion in the first column of square packing is carried out for different values of the distance between the center of the central inclusion in the first column of square packing of inclusions and the traction-free surface boundary in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions. The method is shown to be very accurate and effective for investigating the local stresses in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions.

혼합 체적-경계 적분방정식법을 이용한, 함유체와 공동을 포함한 반무한 고체에서의 탄성해석 (Elastic Analysis of a Half-Plane Containing an Inclusion and a Void Using Mixed Volume and Boundary Integral Equation Method)

  • 이정기;윤구영
    • 대한기계학회논문집A
    • /
    • 제32권12호
    • /
    • pp.1072-1087
    • /
    • 2008
  • A mixed volume and boundary integral equation method (Mixed VIEM-BIEM) is used to calculate the plane elastostatic field in an isotropic elastic half-plane containing an isotropic or anisotropic inclusion and a void subject to remote loading parallel to the traction-free boundary. A detailed analysis of stress field at the interface between the isotropic matrix and the isotropic or orthotropic inclusion is carried out for different values of the distance between the center of the inclusion and the traction-free surface boundary in an isotropic elastic half-plane containing three different geometries of an isotropic or orthotropic inclusion and a void. The method is shown to be very accurate and effective for investigating the local stresses in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions and multiple voids.

Influence of a soft FGM interlayer on contact stresses under a beam on an elastic foundation

  • Aizikovich, Sergey M.;Mitrin, Boris I.;Seleznev, Nikolai M.;Wang, Yun-Che;Volkov, Sergey S.
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.613-625
    • /
    • 2016
  • Contact interaction of a beam (flexible element) with an elastic half-plane is considered, when a soft inhomogeneous (functionally graded) interlayer is present between them. The beam is bent under the action of a distributed load applied to the surface and a reaction of the elastic interlayer and the half-space. Solution of the contact problem is obtained for different values of thickness and parameters of inhomogeneity of the layer. The interlayer is assumed to be significantly softer than the underlying half-plane; case of 100 times difference in Young's moduli is considered as an example. The influence of the interlayer thickness and gradient of elastic properties on the distribution of the contact stresses under the beam is studied.

Frictionless contact problem for a layer on an elastic half plane loaded by means of two dissimilar rigid punches

  • Ozsahin, Talat Sukru
    • Structural Engineering and Mechanics
    • /
    • 제25권4호
    • /
    • pp.383-403
    • /
    • 2007
  • The contact problem for an elastic layer resting on an elastic half plane is considered according to the theory of elasticity with integral transformation technique. External loads P and Q are transmitted to the layer by means of two dissimilar rigid flat punches. Widths of punches are different and the thickness of the layer is h. All surfaces are frictionless and it is assumed that the layer is subjected to uniform vertical body force due to effect of gravity. The contact along the interface between elastic layer and half plane will be continuous, if the value of load factor, ${\lambda}$, is less than a critical value, ${\lambda}_{cr}$. However, if tensile tractions are not allowed on the interface, for ${\lambda}$ > ${\lambda}_{cr}$ the layer separates from the interface along a certain finite region. First the continuous contact problem is reduced to singular integral equations and solved numerically using appropriate Gauss-Chebyshev integration formulas. Initial separation loads, ${\lambda}_{cr}$, initial separation points, $x_{cr}$, are determined. Also the required distance between the punches to avoid any separation between the punches and the layer is studied and the limit distance between punches that ends interaction of punches, is investigated. Then discontinuous contact problem is formulated in terms of singular integral equations. The numerical results for initial and end points of the separation region, displacements of the region and the contact stress distribution along the interface between elastic layer and half plane is determined for various dimensionless quantities.

General nonlocal solution of the elastic half space loaded by a concentrated force P perpendicular to the boundary

  • Artan, R.
    • Structural Engineering and Mechanics
    • /
    • 제9권2호
    • /
    • pp.209-214
    • /
    • 2000
  • The main purpose of this paper is to develop the results introduced in Artan (1996) and to find a general nonlocal linear elastic solution for Boussinesq problem. The general nonlocal solution given Artan (1996) is valid only when the distance to the boundary is greater than one atomic measure. The nonlocal stress field presented in this paper is valid for the whole half plane.

Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane

  • Yaylaci, Murat;Terzi, Cemalettin;Avcar, Mehmet
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.775-783
    • /
    • 2019
  • The present study deals with the numerical analysis of the symmetric contact problem of two bonded layers resting on an elastic half plane compressed with a rigid punch. In this context, Finite Element Method (FEM) based software called ANSYS and ABAQUS are used. It is assumed that the elastic layers have different elastic constants and heights and the external load is applied to the upper elastic layer by means of a rigid stamp. The problem is solved under the assumptions that the contact between two elastic layers, and between the rigid stamp are frictionless, the effect of gravity force is neglected. To validate the constructed model and obtained results a comparison is performed with the analytical results in literature. The numerical results for normal stresses and shear stresses are obtained for various parameters of load, material and geometry and are tabulated and illustrated.

PROPERTIES OF ELASTIC SYMBOLS AND CONSTRUCTION OF SOLUTIONS OF THE DIRICHLET PROBLEM

  • Kawashita, Mishio;Soga, Hideo
    • 대한수학회논문집
    • /
    • 제16권3호
    • /
    • pp.399-404
    • /
    • 2001
  • We examine plane waves of the elastic reduced wave equation in the half-space, and show that linear combinations of them can cover all plane waves on the boundary. The proof is based on the complex analysis for the symbol in the (dual) variable in the normal direction to the boundary.

  • PDF

Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium

  • Lata, Parveen
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.113-124
    • /
    • 2018
  • In the present paper, we have considered a layered medium of two semi-infinite nonlocal elastic solids with intermediate transversely isotropic magnetothermoelastic solid. The intermediate slab is of uniform thickness with the effects of two temperature, rotation and Hall current and with and without energy dissipation. A plane longitudinal or transverse wave propagating through one of the nonlocal elastic solid half spaces, is made incident upon transversely isotropic slab and it results into various reflected and refracted waves. The amplitude ratios of various reflected and refracted waves are obtained by using appropriate boundary conditions. The effect of nonlocal parameter on the variation of various amplitude ratios with angle of incidence are depicted graphically. Some cases of interest are also deduced.

Effect of fractional order on energy ratios at the boundary surface of elastic-piezothermoelastic media

  • Kumar, Rajneesh;Sharma, Poonam
    • Coupled systems mechanics
    • /
    • 제6권2호
    • /
    • pp.157-174
    • /
    • 2017
  • In the present investigation reflection and transmission of plane waves at an elastic half space and piezothermoelastic solid half space with fractional order derivative is discussed. The piezothermoelastic solid half space is assumed to have 6 mm type symmetry and assumed to be loaded with an elastic half space. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of incidence, frequency of incident wave and are influenced by the piezothermoelastic properties of media. The expressions of amplitude ratios and energy ratios are obtained in closed form. The energy ratios are computed numerically using amplitude ratios for a particular model of graphite and Cadmium Selenide (CdSe). The variations of energy ratios with angle of incidence are shown graphically. The conservation of energy across the interface is verified. Some cases of interest are also deduced from the present investigation.