• 제목/요약/키워드: elastic constraint

검색결과 126건 처리시간 0.02초

Topology optimization with functionally graded multi-material for elastic buckling criteria

  • Minh-Ngoc Nguyen;Dongkyu Lee;Joowon Kang;Soomi Shin
    • Steel and Composite Structures
    • /
    • 제46권1호
    • /
    • pp.33-51
    • /
    • 2023
  • This research presents a multi-material topology optimization for functionally graded material (FGM) and nonFGM with elastic buckling criteria. The elastic buckling based multi-material topology optimization of functionally graded steels (FGSs) uses a Jacobi scheme and a Method of Moving Asymptotes (MMA) as an expansion to revise the design variables shown first. Moreover, mathematical expressions for modified interpolation materials in the buckling framework are also described in detail. A Solid Isotropic Material with Penalization (SIMP) as well as a modified penalizing material model is utilized. Based on this investigation on the buckling constraint with homogenization material properties, this method for determining optimal shape is presented under buckling constraint parameters with non-homogenization material properties. For optimal problems, minimizing structural compliance like as an objective function is related to a given material volume and a buckling load factor. In this study, conflicts between structural stiffness and stability which cause an unfavorable effect on the performance of existing optimization procedures are reduced. A few structural design features illustrate the effectiveness and adjustability of an approach and provide some ideas for further expansions.

탄성 보 위를 고속 주행하는 바퀴의 동접촉 해석 (Dynamic Contact Analysis of a Wheel Moving on an Elastic Beam with a High Speed)

  • 이기수
    • 한국소음진동공학회논문집
    • /
    • 제18권5호
    • /
    • pp.541-549
    • /
    • 2008
  • The dynamic contact between a high-speed wheel and an elastic beam is numerically analyzed by solving the whole equations of motion of the wheel and the beam subjected to the contact condition. For the stability of the numerical solution, the velocity and acceleration constraints as well as the displacement constraint are imposed on the contact point. Through the numerical examples, it is shown that the acceleration contact constraint including the Coriolis and centripetal accelerations are crucial for the numerical stability.

완전소성하 변형경화 이종접합재의 계면균열선단 구속상태 및 J-적분 (Interfacial Crack-tip Constraints and J-integrals in Plastically Hardening Bimaterials under Full Yielding)

  • 이형일;김용범
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1159-1169
    • /
    • 2003
  • This paper investigates the effects of T-stress and plastic hardening mismatch on the interfacial crack-tip stress field via finite element analyses. Plane strain elastic-plastic crack-tip fields are modeled with both MBL formulation and a full SEC specimen under pure bending. Modified Prandtl slip line fields illustrate the effects of T-stress on crack-tip constraint in homogeneous material. Compressive T-stress substantially reduces the interfacial crack-tip constraint, but increases the J-contribution by lower hardening material, J$\_$L/. For bimaterials with two elastic-plastic materials, increasing plastic hardening mismatch increases both crack-tip stress constraint in the lower hardening material and J$\_$L/. The fracture toughness for bimaterial joints would consequently be much lower than that of lower hardening homogeneous material. The implication of unbalanced J-integral in bimaterials is also discussed.

구속효과를 고려한 원자로 압력 용기의 파괴거동 예측 (Evaluation of the Crack Tip Fracture Behavior Considering Constraint Effects in the Reactor Pressure Vessel)

  • 김진수;최재붕;김영진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.908-913
    • /
    • 2000
  • In the process of integrity evaluation for nuclear power plant components, a series of fracture mechanics evaluation on surface cracks in reactor pressure vessel(RPV) must be conducted. These fracture mechanics evaluations are based on stress intensity factor, K. However, under pressurized thermal shock(PTS) conditions, the combination of thermal and mechanical stress by steep temperature gradient and internal pressure causes considerably high tensile stress at the inside of RPV wall. Besides, the internal pressure during the normal operation produces high tensile stress at the RPV wall. As a result cracks on inner surface of RPVs may experience elastic-plastic behavior which can be explained with J-integral. In such a case, however, J-integral may possibly lose its validity due to constraint effect. In this paper, in order to verify the suitability of J-integral, two dimensional finite element analyses were applied for various surface crack. Total of 18 crack geometries were analyzed, and Q stresses were obtained by comparing resulting HRR stress distribution with corresponding actual stress distributions. In conclusion, HRR stress fields were found to overestimate the actual crack-tin stress field due to constraint effect.

  • PDF

이축하중을 받는 십자형 시편의 파괴인성 및 구속효과 평가 (Evaluation of Fracture Toughness and Constraint Effect of Cruciform Specimen under Biaxial Loading)

  • 김종민;김민철;이봉상
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.62-69
    • /
    • 2016
  • Current guidance considers that uniaxially loaded specimen with a deep crack is used for the determination of the ductile-to-brittle transition temperature. However, reactor pressure vessel is under biaxial loading in real and the existence of deep crack is not probable through periodic in-service-inspection. The elastic stress intensity factor and the elastic-plastic J-integral which were used for crack-tip stress field and fracture mechanics assessment parameters. The difference of the loading condition and crack geometry can significantly influence on these parameters. Thus, a constraint effect caused by differences between standard specimens and a real structure can over/underestimate the fracture toughness, and it affects the results of the structural integrity assessment, consequentially. The present paper investigates the constraint effects by evaluating the master curve $T_0$ reference temperature of PCVN (Pre-cracked Charpy V-Notch) and small scale cruciform specimens which was designed to simulate biaxial loading condition with shallow crack through the fracture toughness tests and 3-dimensional elastic-plastic finite element analyses. Based on the finite element analysis results, the fracture toughness values of a small scale cruciform specimen were estimated, and the geometry-dependent factors of the cruciform specimen considered in the present study were determined. Finally, the transferability of the test results of these specimens was discussed.

균열선단 개구변위를 이용한 파괴인성 평가와 구속효과와의 관계 (The Relationship between Fracture Toughness and Constraint Effect using Crack Tip Opening Displacement)

  • 한민수;장석기;이돈출;김성종;박종식
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.91-92
    • /
    • 2006
  • For the CT specimen of 25.4mm thickness SS400 steel, the fracture toughness and the magnitude of constraint effect, $A_2$ on the non-linear elastoplastic fracture behaviors were experimentally estimated by crack tip opening displacement. In order to estimate constraint effect, displacement measurement position near crack front should be the existed within plastic region. But it is found that the displacement measurement positions by the ${\delta}_5$ method are in elastic region at crack growth initiation. Hence the estimate of constraint effect, $A_2$ by the ${\delta}_5$ method was not reliable.

  • PDF

실험적 변위측정위치에 따른 구속효과 A2의 거동 (Experimental Behaviors of Constraint Effect A2 depending on Opening Displacement Measurement near Crack Front for SS400.)

  • 한민수;장석기
    • 대한금속재료학회지
    • /
    • 제46권6호
    • /
    • pp.345-350
    • /
    • 2008
  • The magnitude of constraint effect $A_2$ value was experimentally estimated by using crack tip opening displacement(CTOD) between elastic and plastic regions near crack tip front for CT specimen with $25.4t{\ss}{\AE}$ SS400 steel. The constraint effect, $A_2$ was dependent on specimen configuration and on the measured positions of CTOD near crack front. $A_2$ should be estimated using the opening displacement calculated within crack front plastic region. If not, it's not reliable to evaluate of constraint effect at crack growth initiation in this paper.

기판 Etching 기법을 이용한 DLC 필름의 탄성특성 평가 (Evaluation of Elastic Properties of DLC Films Using Substrate Etching Techniques)

  • 조성진;이광렬;은광용;한준희;고대홍
    • 한국세라믹학회지
    • /
    • 제35권8호
    • /
    • pp.813-818
    • /
    • 1998
  • A simple method to measure the elastic modulus E and Poisson's ratio v of diamod-like carbon (DLC) films deposited on Si wafer was suggested. Using the anisotropic etching technique of Si we could make the edge of DLC overhang free from constraint of Si substrate. DLC film is chemically so inert that we could not on-serve any surface damage after the etching process. The edge of DLC overhang free from constraint of Si substrate exhibited periodic sinusoidal shape. By measuring the amplitude and the wavelength of the sinu-soidal edge we could determine the stain of the film required to adhere to the substrate. Since the residual stress of film can be determine independently by measurement of the curvature of film-substrate com-posite we could calculated the biaxial elastic modulus E/(1-v) using stress-strain relation of thin films. By comparing the biaxial elastic modulus with the plane-strain modulus E/(1-{{{{ { v}^{2 } }}) measured by nano-in-dentation we could further determine the elastic modulus and Poisson's ratio independently. This method was employed to measure the mechanical properties of DLC films deposited by {{{{ { {C }_{6 }H }_{6 } }} rf glow discharge. The was elastic modulus E increased from 94 to 169 GPa as the {{{{ { V}_{ b} / SQRT { P} }} increased from 127 to 221 V/{{{{ {mTorr }^{1/2 } }} Poisson's ratio was estimated to be abou 0.16∼0.22 in this {{{{ { V}_{ b} / SQRT { P} }} range. For the {{{{ { V}_{ b} / SQRT { P} }} less than 127V/{{{{ {mTorr }^{1/2 } }} where the plastic deformation can occur by the substrate etching process however the present method could not be applied.

  • PDF

균열선단 변위측정위치에 따른 STS 316L의 구속효과 A2 거동 (Experimental Behaviors of the Constraint Effects A2 Depending on Displacement at Various Measuring Positions near Crack Front for STS 316L CT Specimen)

  • 한민수;장석기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.533-538
    • /
    • 2009
  • The magnitude of constraint effect $A_2$ values on the non-linear elastic plastic fracture toughness was experimentally estimated by using displacement at various measuring positions near crack tip. Constraint effect $A_2$ value was dependent on specimen configuration and on the measured displacement near crack front. The crack tip opening displacement in the vicinity of the crack tip front should be estimated within plastic region when appropriately constraint effect was calculated. It was found that the magnitude of constrain effect |$A_2$| is below 8.0 at the crack tip. But an appropriate location to measure the effective constraint effects $A_2$ at the critical value of J that crack initiation is characterizable by is r = 2mm and ${\theta}=90^{\circ}$ away from original crack tip, and the constraint effect |$A_2$| estimated is 5.3.

수정된 강제유도운동과 탄력밴드를 이용한 가압벨트 저항성 운동이 뇌졸중 환자의 상지 기능에 미치는 효과 (The Effect of Modified Constraint-induced Movement Therapy and Resistive Exercise Using Elastic Band with Pressure Belt on Affected Upper Limb Function in Stroke Patients)

  • 김태곤;김경윤;배세현
    • 대한정형도수물리치료학회지
    • /
    • 제27권3호
    • /
    • pp.25-36
    • /
    • 2021
  • Background: This study aimed to investigate the effect of modified constraint-induced movement therapy (mCIMT) and resistive exercise using elastic band with pressure belt on improving upper extremity function in stroke patients. Methods: Sixteen patients with stroke were randomly assigned to a control group that received mCIMT and resistive exercise using elastic band (n=8) and an experimental group that received mCIMT and resistive exercise using elastic band with pressure belt (n=8). Over the course of four weeks, mCIMT were conducted 60 minute three times per week and resistive exercise using elastic band (with pressure belt) were conducted twice daily, three times per week. The function of the upper extremities were evaluated before, after 2 weeks and 4 weeks using the grip strength test (GST), the box and block test (BBT), and motor activity log (MAL). Results: The values for the GST, the BBT, and MAL increased in both groups as the treatment period progressed. The values for the GST (p<.01), the BBT (p<.001), and MAL (p<.001) were significantly higher in the experimental group than in the control group at 4 weeks after initiating the treatment. Conclusion: We found that mCIMT and wearing a pressure belt during resistive exercise was very useful in improving the function of the upper extremities in patients with stroke.