• Title/Summary/Keyword: elastic behaviors

Search Result 429, Processing Time 0.034 seconds

Load Transfer Behaviors near the Spliced Joint of the Fiber Metal Laminates (섬유금속적층판 연결접합 부위의 하중전달 거동 연구)

  • Choi, Heung-Soap;Roh, Hee-Seok;Jang, Yong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1388-1393
    • /
    • 2003
  • In this study, analytic stress-displacement solutions are obtained by using a shear lag modeling constructed for the spliced joint area with a splicing gap filled with adhesive material of elastic modulus $E_{a}$ in the fiber metal laminate (FML) which is known to have excellent fatigue, corrosion and fire-flame resistant characteristics while with relatively low densities compared to the conventional aluminum alloys for lightweight structures.

  • PDF

Buckling Behavior of Reinforced Concrete Columns under Biaxial Loading (2축 휨을 받는 철근 콘크리트 기둥의 좌굴거동)

  • 김진근;이상순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.480-485
    • /
    • 1996
  • A numerical method for perdicting the behavior of a reinforced concrete column under biaxial loading is proposed, using the layered finite element method. Concrete is assumed to exhibit strain softening and steel reinforcement is elastic-plastic. The bending theory assumptions are used and bond slip of reinforcement is meglected. To perdict the entire load-deformation characteristics, displacement control method is used. This method consider not only combined effect due to axial load and bending moment but also that due to bending moments. Predicted behaviors of reinforced concrete columns under biaxial loading through the numerical method proposed in this study show good agreements with test results.

  • PDF

Experimental Study on Vibration Control of Bracing Dampers using Rubbers (방진원 고무를 이용한 가새형 감쇠기의 진동제어 실험연구)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.249-257
    • /
    • 1998
  • Vibration-resistant rubbers, whose elastic and shear behaviors are similar to viscoelastic materials, are used to make bracing dampers to reduce the building vibration. Experimental study is carried out to find the vibration characteristics of the dampers installed in the building model. The natural frequencies and modal damping ratios are obtained from the free vibration test and Fourier analysis. Shaking table test is performed to find the response behavior of the building model under earthquake loading. The present experimental study shows that the bracing dampers have the behavior of viscoelastic dampers, which increase the modal damping ratios and viscoelastic characteristics.

  • PDF

A Study on Decreasing Behavior of Strength & Elastic Parameters due to Water Infiltration in Rock Cores (III) (침투류에 의한 암석시료의 함수 저감거동 연구 (III))

  • Cho, Hong-Je;Moon, Jong-Kyu;Jeong, Il-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.149-159
    • /
    • 2013
  • This paper deals with behaviors of Poisson's ratio with water content through uniaxial compressive strength against 307 individual rock cores, which are classified into sedimentary, igneous and metamorphic rock. Poissons' ratio demonstrates independent behaviors and does not correlate with mechanical and physical parameter of rocks. The water content behavior of Poissson's ratio represents decrease, increase and random style. Rock samples with decreasing behavior demonstrate absolute preponderance above the 70% level. As Poisson' ratio shows independent behaviors, it should be considered based on experimental results of in-situ rock in the process of design, construction, and supervision.

A study on mechanical characterization of nano-thick films fabricated by transfer assembly technique (이송조립기술로 제조된 나노 박막의 기계적인 특성 평가에 관한 연구)

  • Choi, Hyun-Ju;Kim, Jae-Hyun;Lee, Sang-Joo;Lee, Hak-Joo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.30-34
    • /
    • 2008
  • The transfer assembly (or transfer printing) technique is a promising method for fabricating multi-scale structures on various substrates including semiconductors and polymers, and has been applied to fabrication of flexible devices with superior performance to conventional organic flexible devices. The mechanical behaviors of the structures fabricated by the transfer assembly is a very important information for design and reliability evaluation purpose, but the measurement of the behaviors is difficult since their critical-dimensions are very tiny. In this study, Au films with nano-scale thickness were fabricated on a silicon substrate and their mechanical properties were measured using micro-tensile test. The Au films on the silicon substrate were then transferred to a PDMS substrate using the transfer assembly technique. Self-assembled monolayer (SAM) with a thiol group was used to enhance the transfer of Au films, and the mechanical behaviors were characterized using wrinkle-based test. The test results from micro-tensile and wrinkle-based test are compared to each other, and their implication to the transfer assembly technique is discussed.

  • PDF

The Prediction of Elastic Behavior of the Nano-Sized Honeycombs Based on the Continuum Theory (연속체 이론을 기반으로 한 나노 허니콤 구조물의 탄성 거동 예측)

  • Lee, Yong-Hee;Jeong, Joon-Ho;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.413-419
    • /
    • 2011
  • The nano-size hoenycomb structures have the higher ratio of the surface to the volume than macro-size honeycomb structures, and they can maximize the functionality of the electrical and chemical catalyst. The mechanical behaviors of the nano-sized structures are different from ones of the macro-size structure, and it is caused by the surface effect. This surface effect can be investigated by the atomistic simulation; however, the prediction of mechanical behaviors of the nano-sized honeycombs are practically impossible due to excessive computational resources and computation time. In this paper, by combining the bridging method considering the surface stress elasticity model with homogenization method, the mechanical behaviors of the nano-sized honeycombs are predicted efficiently.

Influence of end fixity on post-yield behaviors of a tubular member

  • Cho, Kyu Nam
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.557-568
    • /
    • 2002
  • For the evaluation of the capability of a tubular member of an offshore structure to absorb the collision energy, a simple method can be employed for the collision analysis without performing the detailed analysis. The most common simple method is the rigid-plastic method. However, in this method any characteristics for horizontal movement and rotation at the ends of the corresponding tubular member are not included. In a real structural system of an offshore structure, tubular members sustain a certain degree of elastic support from the adjacent structure. End fixity has influences in the behaviors of a tubular member. Three-dimensional FEM analysis can include the effect of end fixity fully, however in viewpoints of the inherent computational complexities of the 3-D approach, this is not the recommendable analysis at the initial design stage. In this paper, influence of end fixity on the behaviors of a tubular member is investigated, through a new approach and other approaches. A new analysis approach that includes the flexibility of the boundary points of the member is developed here. The flexibility at the ends of a tubular element is extracted using the rational reduction of the modeling characteristics. The property reduction is based on the static condensation of the related global stiffness matrix of a model to end nodal points of the tubular element. The load-displacement relation at the collision point of the tubular member with and without the end flexibility is obtained and compared. The new method lies between the rigid-plastic method and the 3-demensional analysis. It is self-evident that the rigid-plastic method gives high strengthening membrane effect of the member during global deformation, resulting in a steeper slope than the present method. On the while, full 3-D analysis gives less strengthening membrane effect on the member, resulting in a slow going load-displacement curve. Comparison of the load-displacement curves by the new approach with those by conventional methods gives the figures of the influence of end fixity on post-yielding behaviors of the relevant tubular member. One of the main contributions of this investigation is the development of an analytical rational procedure to figure out the post-yielding behaviors of a tubular member in offshore structures.

Elastic Properties Evaluation of Thin Films on Flexible Substrates with Consideration of Contact Morphology in Nanoindentation (나노압입시험에서의 접촉형상 보정을 통한 유연소자 박막의 탄성특성 평가)

  • Kim, Won Jun;Hwang, Gyeong-Seok;Kim, Ju-Young;Kim, Young-Cheon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.83-88
    • /
    • 2020
  • The evolution of smartphones has led to numerous researches in the mechanical behavior of flexible devices. Due to the nano-size of the thin flexible film, nanoindentation is widely used to evaluate its mechanical behaviors, such as elastic modulus, and hardness. However, the commonly used Oliver-Pharr method is not suited for analyzing the indentation force-depth curves of hard films on soft substrates, as the effects of soft substrate is not considered theoretically. In this study, the elastic modulus of the thin film was evaluated with references to other reported models which include the substrate effect, and with calibration of the indentation depth for the pile-ups between the indenter and test surface. We fabricated test samples by deposition of amorphous metal film on polyimide and silicon wafers for verification of modified models.

Inelastic Displacement Ratios for Smooth Hysteretic System Considering Characteristic Period of Earthquakes (지진의 특성주기를 고려한 완만한 곡선형 이력거동시스템의 비탄성 변위비)

  • Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • In order to predict inelastic displacement response without nonlinear dynamic analysis, the equal displacement rule can be used for the structures with longer natural periods than the characteristic period, $T_g$, of earthquake record. In the period range longer than $T_g$, peak displacement responses of elastic systems are equal or larger than those of inelastic systems. In the period range shorter than $T_g$, opposite trend occurs. In the equal displacement rule, it is assumed that peak displacement of inelastic system with longer natural period than $T_g$ equals to that of elastic system with same natural period. The equal displacement rule is very useful for seismic design purpose of structures with longer natural period than $T_g$. In the period range shorter than $T_g$, the peak displacement of inelastic system can be simply evaluated from the peak displacement of elastic system by using the inelastic displacement ratio, which is defined as the ratio of the peak inelastic displacement to the peak elastic displacement. Smooth hysteretic behavior is more similar to actual response of real structural system than a piece-wise linear hysteretic behavior such as bilinear or stiffness degrading behaviors. In this paper, the inelastic displacement ratios of the smooth hysteretic behavior system are evaluated for far-fault and near-fault earthquakes. The simple formula of inelastic displacement ratio considering the effect of $T_g$ is proposed.

Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation

  • Bourada, Fouad;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Mahmoud, S.R.;Benrahou, Kouider Halim;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.485-495
    • /
    • 2020
  • This paper, presents the dynamic and stability analysis of the simply supported single walled Carbon Nanotubes (SWCNT) reinforced concrete beam on elastic-foundation using an integral first-order shear deformation beam theory. The condition of the zero shear-stress on the free surfaces of the beam is ensured by the introduction of the shear correction factors. The SWCNT reinforcement is considered to be uniform and variable according to the X, O and V forms through the thickness of the concrete beam. The effective properties of the reinforced concrete beam are calculated by employing the rule of mixture. The analytical solutions of the buckling and free vibrational behaviors are derived via Hamilton's principle and Navier method. The analytical results of the critical buckling loads and frequency parameters of the SWCNT-RC beam are presented in the form of explicit tables and graphs. Also the diverse parameters influencing the dynamic and stability behaviors of the reinforced concrete beam are discussed in detail.