• 제목/요약/키워드: elastic analysis

검색결과 4,695건 처리시간 0.032초

분기좌굴이론의 탄소성 유한요소법에의 적용 (An Introduction of Bifurcation Algorithm into the Elastic-Plastic Finite Element Analysis)

  • 김종봉;양동열;윤정환
    • 소성∙가공
    • /
    • 제9권2호
    • /
    • pp.128-139
    • /
    • 2000
  • Wrinkling is one of the major defects in sheet metal products and may be also attributable to the wear of the tool. The initiation and growth of wrinkles are influenced by many factors such as stress state, mechanical properties of the sheet material, geometry of the body, and contact condition. It is difficult to analyze the wrinkling initiation and growth considering the factors because the effects of the factors are very complex and the wrinkling behavior may show a wide variation for small deviations of the factors. In this study, the bifurcation theory is introduced for the finite element analysis of wrinkling initiation and growth. All the above mentioned factors are conveniently considered by the finite element method. The finite element formulation is based on the incremental deformation theory and elastic-plastic elements considering the planar anisotropy of the sheet metal. The proposed method is verified by employing a column buckling problem. And then, the initiation and growth of wrinkling in deep drawing of cylindrical cup are analyzed.

  • PDF

탄성지반 위에 놓인 단면폭이 변화하는 수평 곡선보의 자유진동 해석 (Free Vibration Analysis of Horizontally Curved Beams with Variable Cross Sectional Width on Elastic Foundation)

  • 이병구;박광규;오상진;이태은
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.29-36
    • /
    • 2003
  • This paper deals with the free vibration analysis of horizontally circular mea beams with variable cross sectional width on elastic foundations. Taking into account the effects of rotatory inertia and shear deformation differential equations governing the free vibrations of such beams are derived, in which the Whlkler foundation model is considered as the elastic foundation. The variable width of beam is chosen as the linear equation. The differential equations are solved numerically to calculate natural frequencies. In numerical examples, the curved beam with the hinged-hinged, hinged-clamped, clamped-hinged and damped-clamped end constraints are considered The parametric studies are conducted and the lowest four frequency parameters are reported in figures as the non-dimensional forms.

  • PDF

박벽 곡선보의 엄밀한 탄성요소강도행렬 (Exact Elastic Element Stiffness Matrix of Thin-Walled Curved Beam)

  • 김남일;윤희택;이병주;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.385-392
    • /
    • 2002
  • Derivation procedures of exact elastic element stiffness matrix of thin-walled curved beams are rigorously presented for the static analysis. An exact elastic element stiffness matrix is established from governing equations for a uniform curved beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of displacement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The displacement and normal stress of the section are evaluated and compared with thin-walled straight and curved beam element or results of the analysis using shell elements for the thin-walled curved beam structure in order to demonstrate the validity of this study.

  • PDF

강상자형 거더의 엄밀한 단면변형(Distortion) 해석 (Exact Distortional Deformation Analysis of Steel Box Girders)

  • 진만식;곽태영;이준석;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.43-50
    • /
    • 2002
  • Main goal of this study is to develop MATLAB programming for exact analysis of distortional deformation of the straight box girder. For this purpose, a theory for distortional deformation theory is firstly summarized and then a BEF (Beam on Elastic Foundation) theory is presented using analogy of the corresponding variables. Finally, the governing equation of the beam-column element on elastic foundation is derived. An element stiffness matrix of the beam element is established via a generalized linear eigenvalue problem. In order to verify the efficiency and accuracy of the element using exact dynamic stiffness matrix, buckling loads for the continuous beam structures with elastic foundation and distortional deformations of box girders are calculated.

  • PDF

Buckling and stability of elastic-plastic sandwich conical shells

  • Zielnica, Jerzy
    • Steel and Composite Structures
    • /
    • 제13권2호
    • /
    • pp.157-169
    • /
    • 2012
  • Shell structures are very interesting from the design point of view and these are well recognized in the scientific literature. In this paper the analysis of the buckling loads and stability paths of a sandwich conical shell with unsymmetrical faces under combined load based on the assumptions of moderately large deflections (geometrically nonlinear theory) is considered and elastic-plastic properties of the material of the faces are taken into considerations. External load is assumed to be two-parametrical one and it is assumed that the shell deforms into the plastic range before buckling. Constitutive relations in the analysis are those of the Nadai-Hencky deformation theory of plasticity and Prandtl-Reuss plastic flow theory with the H-M-H (Huber-Mises-Hencky) yield condition. The governing stability equations are obtained by strain energy approach and Ritz method is used to solve the equations with the help of analytical-numerical methods using computer.

Analysis of elastic foundation plates with internal and perimetric stiffening beams on elastic foundations by using Finite Differences Method

  • Orbanich, C.J.;Ortega, N.F.
    • Structural Engineering and Mechanics
    • /
    • 제45권2호
    • /
    • pp.169-182
    • /
    • 2013
  • The mechanical behavior of rectangular foundation plates with perimetric beams and internal stiffening beams of the plate is herein analyzed, taking the foundation design into account. A series of dimensionless parameters related to the geometry of the studied elements were defined. In order to generalize the problem statement, an initial settlements was considered. A numeric procedure was developed for the resolution by means of the Finite Differences Method that takes into account the stiffness of the plate, the perimetric and internal plate beams and the soil reaction module. Iterative algorithms were employed which, for each of the analyzed cases, made it possible to find displacements and reaction percentages taken by the plate and those that discharge directly into the perimetric beams, practically without affecting the plate. To enhance its mechanical behavior the internal stiffening beams were prestressed and the results obtained with and without prestressing were compared. This analysis was made considering the load conditions and the soil reaction module constant.

비정규 높이분포를 가진 3차원 거친 표면의 탄.소성접촉해석 (The Elastic-Plastic Contact Analysis of 3D Rough Surface of Nongaussian Height Distribution)

  • 김태완;구영필;조용주
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.374-381
    • /
    • 2001
  • Surface roughness plays a significant role in friction, wear, and lubrication in machine components. Most engineering surfaces have tile nogaussian height distrubution. So, in this study, elastic-plastic contact simulations are conducted for not only gaussian surfaces but also nongaussian surfaces. Nongaussian rough surface considering the kurtosis is generated numerically. The contact simulation model takes into account the plastic deformation behaviors of asperities by setting a celing on their contact pressure at material hardness value. It will be shown that the performace variables such as real contact area fraction, plastic area fraction and average gap are sensitive to the characteristics of surface geometry according to kurtosis.

  • PDF

암석의 탄성파속도 거동특성과 역학 parameter와의 상관성 해석 (Analysis of Correlation Between Velocity of Elastic Wave and Mechanical Properties of Rocks)

  • 이종석;문종규;최웅의
    • 터널과지하공간
    • /
    • 제21권1호
    • /
    • pp.50-65
    • /
    • 2011
  • 이 연구에서는 퇴적암, 화성암, 변성암군의 10개 암종-1,417개의 시험자료를 이용하여 탄성파속도와 각종 역학적 parameter간의 상관성해석을 시행하였다. 해석 과정에서 나타나는 암종과 역학 parameter간의 거동특성이 상의함을 구명하였으며, 거동이 동일한 암종들을 모집단으로 상관성 해석을 하였다. 각종 시험자료는 표본의 규모 검정과 Chi-Square검정을 거친 후 해석에 임하였다. 도출된 추정식들은 95% 신뢰도가 확보됨을 확인할 수 있었다.

탄성보 이론을 적용한 원형평판의 지지단길이 변화에 따른 강성도 해석 (The Stiffness Analysis of Circular Plate Regarding the Length of Supporting End Using Elastic Beam Theory)

  • 한동섭;한근조;심재준;김태형
    • 한국정밀공학회지
    • /
    • 제21권3호
    • /
    • pp.109-116
    • /
    • 2004
  • This paper investigates the characteristics of deflection for circular plate that has same supporting boundary condition along the width direction of plate according to the length change of supporting end. For two boundary conditions such as simple supporting and clamping on both ends, this study derives maximum deflection formula of circular plate using differential equation of elastic curve, assuming that a circular plate is a beam with different widths along the longitudinal direction. The deflection formula of circular plate is verified by carrying out finite element analysis with regard to the ratio of length of supporting end to radius of circular plate.

Absolute effective elastic constants of composite materials

  • Bulut, Osman;Kadioglu, Necla;Ataoglu, Senol
    • Structural Engineering and Mechanics
    • /
    • 제57권5호
    • /
    • pp.897-920
    • /
    • 2016
  • The objective is to determine the mechanical properties of the composites formed in two types, theoretically. The first composite includes micro-particles in a matrix while the second involves long, thin fibers. A fictitious, homogeneous, linear-elastic and isotropic single material named as effective material is considered during calculation which is based on the equality of the strain energies of the composite and effective material under the same loading conditions. The procedure is carried out with volume integrals considering a unique strain energy in a body. Particularly, the effective elastic shear modulus has been calculated exactly for small-particle composites by the same procedure in order to determine of bulk modulus thereof. Additionally, the transverse shear modulus of fiber reinforced composites has been obtained through a simple approach leading to the practical equation. The results have been compared not only with the outcomes in the literature obtained by different method but also with those of finite element analysis performed in this study.