• Title/Summary/Keyword: elastic analysis

Search Result 4,695, Processing Time 0.038 seconds

Structural Design of Liquid Rocket Thrust Chamber Regenerative Cooling Channel (액체로켓 연소기 재생냉각 채널 구조설계)

  • Ryu Chul-Sung;Chung Yong Hyun;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.134-138
    • /
    • 2005
  • The structural analysis and water pressure test of regenerative liquid rocket thrust chamber cooling channel specimens are performed at room temperature. material properties of copper alloy are obtained by uniaxial tension test at room temperature and used of elastic-plastic structural analysis. The plate type of cooling channel specimen are manufactured and performed water pressure test in order to confirm the analysis results. The differences between results of elastic-plastic analysis and that of water pressure test of cooling channel specimen are small and find that manufacturing process affect the structural stability of cooling channel very much because cooling channel thickness is small

  • PDF

Analysis of material dependency in an elastic - plastic contact models using contact mechanics approach

  • Gandhi, V.C. Sathish;Kumaravelan, R.;Ramesh, S.;Sriram, K.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.1051-1066
    • /
    • 2015
  • The study aims on the effect of material dependency in elastic- plastic contact models by contact analysis of sphere and flat contact model and wheel rail contact model by considering the material properties without friction. The various materials are selected for the analysis based on Young's modulus and yield strength ratio (E/Y). The simulation software 'ANSYS' is employed for this study. The sphere and flat contact model is considered as a flattening model, the stress and strain for different materials are estimated. The simulation of wheel-rail contact model is also performed and the results are compared with the flattening model. The comparative study has also been extended for finding out the mean contact pressure for different materials the E/Y values between 150 and 660. The results show that the elastic-plastic contact analysis for materials up to E/Y=296.6 is depend on the nature of material properties and also for this material the mean contact pressure to yield strength reaches 2.65.

Proposal of the Penalty Factor Equations Considering Weld Strength Over-Match

  • Kim, Jong-Sung;Jeong, Jae-Wook;Lee, Kang-Yong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.838-849
    • /
    • 2017
  • This paper proposes penalty factor equations that take into consideration the weld strength over-match given in the classified form similar to the revised equations presented in the Code Case N-779 via cyclic elastic-plastic finite element analysis. It was found that the $K_e$ analysis data reflecting elastic follow-up can be consolidated by normalizing the primary-plus-secondary stress intensity ranges excluding the nonlinear thermal stress intensity component, $S_n$ to over-match degree of yield strength, $M_F$. For the effect of over-match on $K_n{\times}K_{\nu}$, dispersion of the $K_n{\times}K_{\nu}$ analysis data can be sharply reduced by dividing total stress intensity range, excluding local thermal stresses, $S_{p-lt}$ by $M_F$. Finally, the proposed equations were applied to the weld between the safe end and the piping of a pressurizer surge nozzle in pressurized water reactors in order to calculate a cumulative usage factor. The cumulative usage factor was then compared with those derived by the previous $K_e$ factor equations. The result shows that application of the proposed equations can significantly reduce conservatism of fatigue assessment using the previous $K_e$ factor equations.

Multi-scale Progressive Failure Analysis of Triaxially Braided Textile Composites

  • Geleta, Tsinuel N.;Woo, Kyeongsik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.436-449
    • /
    • 2017
  • In this paper, the damage and failure behavior of triaxially braided textile composites was studied using progressive failure analysis. The analysis was performed at both micro and meso-scales through iterative cycles. Stress based failure criteria were used to define the failure states at both micro- and meso-scale models. The stress-strain curve under uniaxial tensile loading was drawn based on the load-displacement curve from the progressive failure analysis and compared to those by test and computational results from reference for verification. Then, the detailed failure initiation and propagation was studied using the verified model for both tensile and compression loading cases. The failure modes of each part of the model were assessed at different stages of failure. Effect of ply stacking and number of unit cells considered were then investigated using the resulting stress-strain curves and damage patterns. Finally, the effect of matrix plasticity was examined for the compressive failure behavior of the same model using elastic, elastic - perfectly plastic and multi-linear elastic-plastic matrix properties.

Comparison between 2D FEM Analysis using Elastic (visco)-plastic model and In-situ Behavior (성토가 주변지반에 미치는 영향에 대한 해석적 검증과 실측치의 비교분석)

  • 황성춘;김승렬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.79-92
    • /
    • 2000
  • In this paper, comparison of the observed and the predicted ground deformations due to the construction of road embankment with peck drain near the construction site was made. Measurement of the ground deformation at the gasoline stand due to the construction of road embankment was made and it was compared with the predicted deformation results of Finite Element Method analysis made with Elasto-plastic and Elastic visco-plastic models. A well agreement was obtained between the measured and predicted ground deformations.

  • PDF

Dynamic Stability Analysis of Non-conservative Systems under Pasternak Elastic Foundations (Pasternak 탄성지지 하에서 비보존력계의 동적 안정성해석)

  • 이준석;김남일;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.73-80
    • /
    • 2004
  • Mass matrix, elastic stiffness matrix, load correction stiffness matrix by circulatory non-conservative force, and Winkler and Pasternak foundation matrix of framed structure in 2-D are calculated for stability analysis of divergence or flutter system. Then, a matrix equation of the motion for the non-conservative system is formulated and numerical results are presented to demonstrate the effect of some parameters with using Newmark method.

  • PDF

Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations

  • Akgoz, Bekir;Civalek, Omer
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.403-421
    • /
    • 2011
  • In the present manuscript, geometrically nonlinear free vibration analysis of thin laminated plates resting on non-linear elastic foundations is investigated. Winkler-Pasternak type foundation model is used. Governing equations of motions are obtained using the von Karman type nonlinear theory. The method of discrete singular convolution is used to obtain the discretised equations of motion of plates. The effects of plate geometry, boundary conditions, material properties and foundation parameters on nonlinear vibration behavior of plates are presented.

Finite element analysis of welding process in consideration of transformation plasticity in welding (용접에서 발생하는 변태소성을 고려한 용접공정의 유한요소 해석)

  • 임세영
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.210-212
    • /
    • 2003
  • Finite element analysis of welding processes, which entail phase evolution, heat transfer and deformation, is considered in this paper. Attention focuses on numerical implementation of the thermo-elastic-plastic constitutive equation proposed by Leblond et al in consideration of the transformation plasticity. Based upon the multiplicative decomposition of deformation gradient, hyperelastic formulation is employed for efficient numerical integration, and the algorithmic consistent moduli for elastic-plastic deformations including transformation plasticity are obtained in the closed form. The convergence behavior of the present implementation is demonstrated via a couple of numerical example.

  • PDF