• Title/Summary/Keyword: elastic

Search Result 9,909, Processing Time 0.035 seconds

Static displacement and elastic buckling characteristics of structural pipe-in-pipe cross-sections

  • Sato, M.;Patel, M.H.;Trarieux, F.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.263-278
    • /
    • 2008
  • Structural pipe-in-pipe cross-sections have significant potential for application in offshore oil and gas production systems because of their property that combines insulation performance with structural strength in an integrated way. Such cross-sections comprise inner and outer thin walled pipes with the annulus between them fully filled by a selectable thick filler material to impart an appropriate combination of properties. Structural pipe-in-pipe cross-sections can exhibit several different collapse mechanisms and the basis of the preferential occurrence of one over others is of interest. This paper presents an elastic analyses of a structural pipe-in-pipe cross-section when subjected to external hydrostatic pressure. It formulates and solves the static and elastic buckling problem using the variational principle of minimum potential energy. The paper also investigates a simplified formulation of the problem where the outer pipe and its contact with the filler material is considered as a 'pipe on an elastic foundation'. Results are presented to show the variation of elastic buckling pressure with the relative elastic modulus of the filler and pipe materials, the filler thickness and the thicknesses of the inner and outer pipes. The range of applicability of the simplified 'pipe on an elastic foundation' analysis is also presented. A brief review of the types of materials that could be used as the filler is combined with the results of the analysis to draw conclusions about elastic buckling behaviour of structural pipe-in-pipe cross-sections.

A Study on the Experimental and Theoretical Analysis About the Elastic Deflections of Die for Cold Forging (냉간 단조용 금형의 탄성 변형에 관한 실험 및 이론적 연구)

  • 이영선;이대근;이정환
    • Transactions of Materials Processing
    • /
    • v.11 no.2
    • /
    • pp.171-178
    • /
    • 2002
  • The elastic deflections of the cold forging die influence the dimensional accuracy of forged parts. The die dimension is continuously changed during the loading, unloading, and ejecting stage. In this paper, we evaluated the elastic deflections of cold forging die during the loading, unloding and ejecting stage with experimental and FEM analysis. Uni-axial strain gages are used to measure elastic strain of die during each forging stage. Strain gages are attached un the upper surface of die. A commercial F.E.M. code, DEFORM$-2D^{TM}$ is used to predict the elastic strains of die, to be compared those by experiments. Two modelling approaches are used to define the reasonable analysis method. The first of the two modelling approaches is to regard the die as rigid body over forging cycle. And then, the die stress is analyzed by loading the die with pressure from the deformed part. The other is to regard the die as elastic body from forging cycle. The elastic strain of tool is calculated and the tool is elastically deformed at each strep. The calculated results under the elastic die assumption are well agreed wish experimental data using the strain gages.

Derivation of the Extended Elastic Stiffness Formula of the Holddown Spring Assembly Comprised of Several Leaves

  • Song, Kee-Nam;Kang, H.S.;Yoon, K.H.
    • Nuclear Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.328-334
    • /
    • 1999
  • Based on the Euler beam theory and the elastic strain energy method, the elastic stiffness formula of the holddown spring assembly consisting of several leaves was previously derived. Even though the previous formula was known to be useful to estimate the elastic stiffness of the holddown spring assembly, recently it was reported that the elastic stiffness from the previous formula deviated greatly from the test results as the number of leaves was increased. The objective of this study is to extend the previous formula in order to resolve such an increasing deviation when increasing the number of leaves. Additionally, considering the friction forces acting on the interfaces between the leaves, we obtained an extended elastic stiffness formula. The characteristic test and the elastic stiffness analysis on the various kinds of specimens of the holddown spring assembly have been carried out; the validity of the extended formula has been verified by the comparison of their results. As a result of comparisons, it is found that the extended formula is able to evaluate the elastic stiffness of the holddown spring assembly within the maximum error range of + 12%, irrespective of the number of the leaves.

  • PDF

Effects of Elastic Blood Vessel Motions on the Wall Shear Stresses for Pulsatile Flow of a Newtonian Fluid and Blood (뉴턴유체와 혈액의 맥동유동시 탄성혈관의 운동이 벽면전단응력분포에 미치는 영향)

  • Roh, Hyung-Woon;Kim, Jae-Soo;Park, Gil-Moon;Suh, Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.318-323
    • /
    • 2001
  • Characteristics of the pulsatile flow in a 3-dimensional elastic blood vessel are investigated to understand the blood flow phenomena in the human body arteries. In this study, a model for the elastic blood vessel is proposed. The finite volume prediction is used to analyse the pulsatile flow in the elastic blood vessel. Variations of the pressure, velocity and wall shear stress of the pulsatile flow in the elastic blood vessel are obtained. The magnitudes of the velocity waveforms in the elastic blood vessel model are larger than those in the rigid blood vessel model. The wall shear stresses on the elastic vessel vary with the blood vessel motions. Amplitude indices of the wall shear stress for blood in the elastic blood vessel are $4\sim5$ times larger than those of the Newtonian fluid. As the phase angle increased, point of the phase angle is are moved forward and the wall shear stresses are increased for blood and the Newtonian fluid.

  • PDF

The Prediction of Elastic Deformation of Forging Die to Improve Dimensional Accuracy (단조품의 정밀도 향상을 위한 금형의 탄성변형 예측)

  • Choe, Jong-Ung;Lee, Yeong-Seon;Lee, Jeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2610-2618
    • /
    • 2000
  • In this paper, the elastic deformation of cold forging die has been investigated to improve the accuracy of forged parts with FEM analysis and experiments using the strain gages. In the finite element analysis, two types of analysis are used to predict elastic deformation of die. The one is that dies are considered to be elastic body from initial stage to final one, and the other is that the dies are considered to be rigid body during forging simulation and then considered to be elastic body at elastic analysis. Considering the results of analysis and experiments, it is likely that the analytical results are in good agreement with experimental inspections. The method using the elastic assumption of die relatively takes a lot of time to simulate the forming operation. However, It is better that using an elastic die to predict not only the shape of product but also filling of die cavity.

ELASTIC WAVE RESONANCE SCATTERING FROM AN ELASTIC CYLINDER (탄성체로 인한 탄성파의 공명산란)

  • 이희남
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.833-838
    • /
    • 2003
  • The problem of elastic wave resonance scattering from elastic targets is studied in this paper. A new resonance formalism to extract the elastic resonance information of the target from scattered elastic waves is introduced. The proposed resonance formalism is an extension of the works developed for acoustic wave scattering problems by the author. The classical resonance scattering theory computes reasonable magnitude information of the resonances in each partial wave, but the phase behaves in somewhat irregular way, therefore, is not clearly explainable. The proposed method is developed to obtain physically meaningful magnitude and phase of the resonances. As an example problem, elastic wave scattering from an infinitely-long elastic cylinder was analyzed by the proposed method and compared to the results by RST. In case of no mode conversion, both methods generate identical magnitude. However, the new method computes exact $\pi$ radian phase shills through resonances and anti-resonances while RST produces physically unexplainable phases. In case of mode conversion, in addition to the phase even magnitudes are different. The phase shifts through resonances and antiresonances obtained by the proposed method are not exactly $\pi$ radians due to energy leak by mode conversion. But, the phases by the proposed method show reasonable and intuitively correct behavior compared to those by RST.

  • PDF

Study on the Thermal Properties and High Impact of Elastic Epoxy Blend System (탄성에폭시 블렌드 시스템의 열적 특성 및 내충격성에 관한 연구)

  • 이경용;이관우;민지영;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.192-199
    • /
    • 2004
  • Elastic-factor of elastic epoxy were investigated by TMA (Thermomechanical Analysis), DMTA (Dynamic Mechanical Thermal Analysis), TGA (Thermogravimetric Analysis) and FESEM (Field Emission Scanning Electron Microscope) for structure-images analysis as toughness-investigation to improve brittleness of existing epoxy resin. A range of measurement temperature of the TMA and DMTA was changed from -20($^{\circ}C$) to $200^{\circ}(C)$, and TGA was changed from $0^{\circ}(C)$ to $600^{\circ}(C)$. Glass transition temperature (Tg) of elastic epoxy was measured through thermal analysis devices with the content of 0(phr), 20(phr) and 35(phr). Also, thermal expansion coefficient (a), high temperature, modulus and loss factor were investigated through TMA, TGA, and DMTA. In addition, the structure of specimens was analyzed through FESEM, and then elastic-factor of elastic epoxy was visually showed by FESEM. As thermal analysis results, 20(phr) was more excellent than 30(phr) thermally and mechanically. Specially, thermal expansion coefficient, high temperature, modulus, and damping properties were excellent. By structure-images analysis through FESEM, we found elastic-factor of elastic epoxy that is not existing epoxy, and proved high impact.

Elastic stiffness of stud connection in composite structures

  • Qin, Xi;Yang, Guotao
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.419-433
    • /
    • 2021
  • In composite structures, shear connectors are crucial components to resist the relative slip between the steel and concrete, and thereby to achieve the composite actions. In the service stage, composite structures are usually in elastic state, so the elastic stiffness of the shear connection is a quite important parameter in the structural analysis of composite structures. Nevertheless, the existing studies mainly focus on the load-slip relationship rather than the tangent stiffness at the initial elastic stage. Furthermore, when composite beams subjected to torque or local load, shear connections are affected by both tensile force and shear force. However, the stiffness of shear connections under combined effects appears not to have been discussed hitherto. This paper investigates the initial elastic stiffness of stud connections under combined effects of biaxial forces. The initial expression and the relevant parameters are obtained by establishing a simplified analytical model of the stud connection. Afterwards, parametric finite element analysis is performed to investigate the effects of the relevant factors, including the stud length, stud diameter, elastic modulus of concrete, elastic modulus of steel and volume ratio of reinforcement. The feasibility of the proposed modelling has been proved by comparing with sufficient experimental tests. Based on the analytical analysis and the extensive numerical simulations, design equations for predicting the initial elastic stiffness of stud connections are proposed. The comparison between the equations and the data of finite element models demonstrates that the equations are accurate enough to serve for engineering communities.

Elastic stiffness of perfobond connections in composite structures

  • Qin, Xi;Yang, Guotao
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.221-241
    • /
    • 2022
  • Perfobond rib connectors are widely used in composite structures to achieve the composite action between the steel and the concrete, and empirical expressions for their strength and secant stiffness have been obtained by numerical simulations or push-out tests. Since perfobond connections are generally in an elastic state in the service process and the structural analysis are always based on the elastic properties of the members, the secant stiffness is not applicable for the normal structural analysis. However, the tangent stiffness of perfobond connections has not been introduced in previous studies. Moreover, the perfobond connections are bearing tension and shear force simultaneously when the composite beams subjected to torque or local loads, but the current studies fail to arrive at the elastic stiffness considering the combined effects. To resolve these discrepancies, this paper investigates the initial elastic stiffness of perfobond connections under combined forces. The calculation method for the elastic stiffness of perfobond connections is analyzed, and the contributions of the perfobond rib, the perforating rebar and the concrete dowel are investigated. A finite element method was verified with a high value of correlation for the test results. Afterwards, parametric studies are carried out using the reliable finite element analysis to explore the trends of several factors. Empirical equations for predicting the initial elastic stiffness of perfobond connections are proposed by the numerical regression of the data extracted by parametric studies. The equations agree well with finite element analysis and test results, which indicates that the proposed empirical equations reflect a high accuracy for predicting the initial elastic stiffness of perfobond connections.

Simplified elastic-plastic analysis procedure for strain-based fatigue assessment of nuclear safety class 1 components under severe seismic loads

  • Kim, Jong-Sung;Kim, Jun-Young
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2918-2927
    • /
    • 2020
  • This paper proposes a simplified elastic-plastic analysis procedure using the penalty factors presented in the Code Case N-779 for strain-based fatigue assessment of nuclear safety class 1 components under severe seismic loads such as safety shutdown earthquake and beyond design-basis earthquake. First, a simplified elastic-plastic analysis procedure for strain-based fatigue assessment of nuclear safety class 1 components under the severe seismic loads was proposed based on the analysis result for the simplified elastic-plastic analysis procedure in the Code Case N-779 and the stress categories corresponding to normal operation and seismic loads. Second, total strain amplitude was calculated directly by performing finite element cyclic elastic-plastic seismic analysis for a hot leg nozzle in pressurizer surge line subject to combined loading including deadweight, pressure, seismic inertia load, and seismic anchor motion, as well as was derived indirectly by applying the proposed analysis procedure to the finite element elastic stress analysis result for each load. Third, strain-based fatigue assessment was implemented by applying the strain-based fatigue acceptance criteria in the ASME B&PV Code, Sec. III, Subsec. NB, Article NB-3200 and by using the total strain amplitude values calculated. Last, the total strain amplitude and the fatigue assessment result corresponding to the simplified elastic-plastic analysis were compared with those using the finite element elastic-plastic seismic analysis results. As a result of the comparison, it was identified that the proposed analysis procedure can derive reasonable and conservative results.