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ABSTRACT

The problem of elastic wave resonance scattering from elastic targets is studied in this paper. A new resonance
formalism to extract the elastic resonance information of the target from scattered elastic waves is introduced. The
proposed resonance formalism is an extension of the works developed for acoustic wave scattering problems by the
author. The classical resonance scattering theory computes reasonable magnitude information of the resonances in each
partial wave, but the phase behaves in somewhat irregular way, therefore, is not clearly explainable. The proposed
method is developed to obtain physically meaningful magnitude and phase of the resonances. As an example problem,
elastic wave scattering from an infinitely-long elastic cylinder was analyzed by the proposed method and compared to
the results by RST. In case of no mode conversion, both methods generate identical magnitude. However, the new
method computes exact r radian phase shifts through resonances and anti-resonances while RST produces physically
unexplainable phases. In case of mode conversion, in addition to the phase even magnitudes are different. The phase
shifts through resonances and antiresonances obtained by the proposed method are not exactly » radians due to
energy leak by mode conversion. But, the phases by the proposed method show reasonable and intuitively correct
behavior compared to those by RST.

Nomenclature z acoustoelastic impedance
a nondimensionalized frequency (= k;a)
A scattering coefficient for P wave incidence and P B nondimensionalized frequency (= ksa)
wave scattering :
B scattering coefficient for P wave incidence and S en Neuma'.nn function
wave scattering 7 scattering angle
F  scattering coefficient for S wave incidence and P I density of the medium material
wave scattering P density of the cylinder material
G scattering coefficient for S wave incidence and S 2 )
wave scattering superscript
K modal charisteristics of the scatterer ) rigid background
s¥e scattering function res resonance .
n pp P wave incidence and P wave scattering
(ryresvo resonance scattering function ps P wave incidence and S wave scattering
n . ) sp S wave incidence and P wave scattering
XY, Z Car.tesxan coordxpates ss S wave incidence and S wave scattering
a radius of the cylinder ) st resonance scattering theory
Cpl P wave velocity in the medium y Por S wave
o S wave velocity in the medium - PorS wave
Cp2 P wave velocity in the cylinder
Cs2 S wave velocity in the cylinder subscrint
f partial wave p
: o n normal mode number
k  wave number 1. INTRODUCTION
Acoustic or elastic wave resonance scattering
« A Rsn 7] A 24 AEE s from elastic targets has been studied theoretically and
E-mail : hnthee@sunchon.ac.kr experimentally in numerous papers and books (Refs. 1
Tel : (061) 750-3824, Fax : (061) 750-3820 ~ 9, 10, 14). Since late 1970’s when resonance

scattering theory (RST) was issued by applying the
resonance theory of nuclear reactions to the problem of
wave scattering from elastic bodies, it has become the
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standard theory to study acoustic and elastic wave
resonance scattering problems. RST shows that the
fluctuating behavior of the cross section for sound
scattering from elastic bodies is caused by a linear
superposition of the scatterer’s elastic vibration and a
smoothly-varying geometric background. According to
the standard RST, the elastic resonance information of
the scatterer was isolated by subtracting the proper
background from each normal mode of the scattered
wave. Using this background subtraction method, the
magnitude of the resonance could reasonably be
obtained. However, the behavior of the phase has
remained unclear since it did not clearly exhibit =
radians phase shifts through resonances although we
expect that the phase of a resonance term should shift
by 7z radians as the frequency passes through the
resonance frequency. Some discussions were made on
= phase jumps in the references 4 and 6. However,
they mentioned only some trends showing phase jumps
in the partial wave curve, not in the resonance curve,
because the phase of the resonance curve obtained by
the background subtraction method showed irregular
behavior. In order to make sure that the resonance
information is correctly exiracted from scattered waves,
one should be able to physically explain the behavior of
phase as well as magnitude of the resonances.

A new method to extract the resonance
information of the scatterer has been proposed for
acoustic wave scattering problems in references 11~13,
The newly proposed method and RST compute
identical magnitude of the resonances from each partial
wave. However, the phase obtained by the new method
shows exact 7 radians phase shifts through the
resonance and anti-resonance frequencies, which the
standard RST does not show. And, the phase shifts by
7 radians through resonances occur gradually or
abruptly depending on the resonance width, which is a
physically meaningful and intuitive behavior. Even
though both the new method and RST compute
identical magnitude, they generate different total
resonance spectra due to the phase difference in each
partial wave. If a resonance-like peak is not
accompanied with 7 radians phase shift, we can
distinguish it from a scatterer’s vibrational resonance.
The correct computation of phase as well as magnitude
of the resonances is important for the potential
applications such as the remote target identification
technique as well as for the understanding of the
fundamental physics of the resonance scattering
phenomena.

In this paper, we generalize the concept of the
new resonance formalism, developed for acoustic wave
scattering in the references 11~13 to elastic wave
scattering to elastic targets. Applying the new resonance
formalism, the problem of elastic wave scattering from
an infinitely-long elastic cylinder is numerically solved.
Due to mode conversion the new method and RST
compute different magnitude and phase of the
resonance from each partial wave. We will discuss that

the new method computes physically me:ningful and
intuitive phase transitions through the resonances and
anti-resonances compared with RST.

2. RESONANCE SCATTERING THEORY

Let us consider a plane elastic wave incident
normally on an infinitely-long elastic (chosen as
Tungsten carbide) cylinder imbedded in an elastic
(chosen as Lucite) medium, as shown in Fig. I.
Resonance scattering theory (Refs. 4,14) :laimed that
the complicated shape of scattered wave .s due to the
linear superposition of the elastic resorance of the
scafterer and the smoothly-varying geometric
background. In this paper, the proper buckground is
assumed as the rigid background because of the larger
acoustic impedence of the cylinder mate:ial than the
medium. Acoustic properties of the materizls are shown
in Table 1. A partial wave of scattered wave with the
corresponding rigid backgrounds is shown in Fig. 2.
Based on the standard RST, the resonances of the
scatterer were obtained by subtracting the background
from each partial wave as follows :

For P-wave (longitudinal wave) incicence case,

2
'gr)res,pp,"s’ - ’__ Eq(4, - A'(Ir))cos nt', (1a)
ma
2
'Sr)res,ps,rst _ /_ £n(B, - B’(Ir))sin ne. (1b)
mip

For S-wave (shear wave) incidence case,

2
n(r)res,sp,"St - J_En (F, - Fn(r))sin né, (22)
mo

'fr)res,ss,rst - ’ign (G, - G,(lr) Ycosnb, (2b)
np

where f, is a partial wave for mode rumber n as
defined by Solomon (1984) and ¢, is Neumann factor.

The superscripts res and (#) stand for the rosonance and
the rigid background, respectively. The non-
dimensionalized frequencies « , g ard scattering

coefficients 4, ,B,,F, and G, are defined in the

same manner as Refs. 13 and 14. In Egs. (1b) and (2a),
a part of the energy of incident P (or S) wave is
converted to S (or P) wave, which is known as mode
conversion phenomena.

Figures 3 through 5 (dotted lines) show the
resonance curves computed by Egs. (1) and (2). The
sharp peaks in magnitudes of these figur:s have been
regarded as the vibrational resonances of the cylinder.
We, however, note that in these figures th: behavior of
the phase obtained using Eq. (1) is not physically
meaningful. As we pointed out in the reference 13, the
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phase of the resonances calculated by the standard RST
does not clearly exhibit = radians phase shifts
through a resonance although it is well known that the
phase of a resonance should change by # radians,
varying gradually or abruptly depending on the
resonance width, as the frequency passes through the
resonance frequency. Therefore, we can argue that Eq.
(1) may not correctly isolate the resonances of the
scatterer although the magnitude plots show resonance-
like features.

3. NEW METHOD FOR EXTRACTING
THE ELASTIC RESONANCE
INFORMATION

In this section, we propose a new method to
extract the resonance information, of which both
magnitude and phase are physically meaningful, for
elastic wave scattering problems. This investigation
provides a generalization of the previous research (Refs.
11~13) on acoustic wave scattering for elastic wave
scattering problems.

The scattering functions can be expressed as

vo (rvo (r)* (ryvo Z(Z)Va -

n
Sy =8, Sy’ =8, ( 21)1/0 =), (3)

Zn - Ky

,where the z’s are acoustoelastic impedances and K, is
related to modal characteristics of the scatterer, which
are ratios of 2 x 2 determinants. The superscripts v
and o denote pors, which represents P or S wave,

Sr(zr)va

respectively. is the scattering function

corresponding to the rigid cylinder. In Eq. (3), we can
see that S'°

» is the product of the background
Sgr)vc

(ry*

, and the remaining term §,) ©  which includes

the resonance information of the elastic target. However,

S,(,’)*

the modal property information K, in both numerator
gt
n

is not a pure resonance form because it contains

and denomenator. Thus, contains a real unit

constant which hides resonances unless it is removed.
t 3
The unit constant contained in S,(,r) should be

subtracted in order to obtain the resonances because
adding a constant term to a complex quantity changes
both magnitude and phase of the original complex

. (ry* .
quantity. S, may be written as
2o Qv (o
(r)*:zr(z "Kn=zft _Zn) 1
n zﬁl)va K, zsll)vcr -K,

- S’(’r)res,va +1, )
SVG'
,where S,(,r)res’va(= (r")vo_ ~1) is defined as the
S

n
resonance scattering function which consist purely of
resonance information of the scatterer.
By the definition in Eq. (4), the resonance
scattering functions can be written as

2 1
S _ zf, PP Zf, Yep S,‘,’P
p =

zgll)pp -K, Sr(lr)pp

1

)]
A, - A
- z"——-(!'rT, (52)
1+24,
2 1
(r)res,ps z,(, P _ zfr )ps Srlz)s
Sn =" Wps =—ps
Zn F -Ky Sn P
BBy (sb)
B,(,’)
2 1
(r)res,sp ZS: P ZSI s S;p
Sn =~ s = !
Zp P -Ky Sy P
(r)
F, — F,
= —"—# R (5¢)
Fn
2 1
(r)res,ss zr(z Jss - Z;(1 Jss S;:S
Sn =T (Oss = (r)ss -1
E -K, Sy
G. -c\"
=g _n (5d)
1+2687)

From Eq. (5), the relationship among the
scattering coefficient, background and the resonance
scattering function may be expressed as

- A’(lr) +%S’(1r)res,pp + A’('r)sr(lr)res,pp’ (63)

An

3, =8 4 psresps (6b)
Fy = B 4 gD s(rressp (6¢)
G, = G 4 Lsrresss | g resss g

Note that Eq.(6) states that in each Rayleigh
normal mode (partial wave) the resonance interacts
with the background as a product term. This means that
Eq.(5) clearly shows that the scattering in each normal
mode is not just a simple summation of the background
and resonance as claimed by RST, but includes a
product interaction term between the resonance and
background.

Using the same rationale in the reference 13, and
considering Eq. (5) and the following relationships
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sp
n

1 1 |
L _ L ps _ !
A,,_z(s,, -1, B,,—ZS,, , c,,_-zs
1
and D, =—(S,’ -1), @)
2

the new expressions to compute the resonances can be
written as

f 2
(r)res,pp new _ S(r)res,pp cos nb

4 - A
= -—sn ( y cos ng, (8a)
ma  1+24,
2
'fr)res,ps,new ~, Slr)res,ps sinnd
7ip

(r
2 1 B, -B
= —en-—-ir—nsinne,(Sb)

wp "2 "
2 1
’Sr)rex,sp,new - (r)res,sp sinnd
mia 2
2 1F, F(’) nnd. (89
=&y~ sinn@, C
ma 2 (r)
2 1
n(r)res,ss,new =, - Sflr)res,ss cos n
mp 2
2 G,-G"
= |—e¢ cosnf . (8d)

ap " 14260

Using Eq. (8), the resonance information, which is
mixed with the background as seen in Eq. (6), can be
isolated. The only difference between Egs. (1) and (8)
is the existence of the denominator which is equal to
the rigid background scattering function. This
difference is consistent with acoustic wave scattering
problem. However, unlike acoustic wave scattering, the
background scattering functions in the denominators of
Eq. (8) are not unitary when mode conversion occurs.
Therefore,both magnitude and phase of the resonances
computed by Eqgs. (1) and (8) are generally different.

4. NUMERICAL ANALYSIS AND
DISCUSSION

Let us consider the backscattering (@ = 7 ) for PP
and SS cases. For PS case, we plot the values in Egs.
(1) and (8) divided by sinn@ because there is no
backscattering response.

For PP case, mode conversion does not occur for
the breathing mode n = 0. Therefore, in Fig. 3(a) we

obtain identical magnitude by the standard RST [Eq.
(1)] and new [Eq. (8)] method. This is because the

denominator 1+ 2A,(,r) , which is S,(,r)p P in Eq. (82)
is unitary. However, their phases are significantly
different because S,(,r)p P has its own phase shift.

While the phase obtained by RST does not behave in a
physically meaningful way, the new method generates
phase shifts of exact # radians through the
resonances and anti-resonances. For n 2 1, due to the

(r)pp

energy leak by mode conversion, S, in the

denominator in Eq. (8a) is not unitary. Therefore, even
magnitudes computed by the two methods are different
as can be seen in Fig. 3(b) for n=2. In Fig. 3(b), the
phase shifts through resonances and anti-resonances
computed by the new method are not z radians
because of the energy leak. However, the behavior of
phase computed by the new method looks physically
more meaningful and intuitive. This kind of phase
behavior is also found in a damped mechanical
vibration system.

For SS case, as shown in Fig. 4 we have similar
results to PP case.

For mode converted cases such as S (P) wave
scattering with P (S) wave incidence, we can observe
the same trend with PP or SS case, except that there is
no n=0 mode. Fig. 5 compares the resonances
computed by the two methods for PS case, n=2 mode.

Due to the difference in the phase of each partial
wave, the summed resonance spectra is significantly
different. For example, Fig. 6 compares summed
resonance spectra computed by the two methods, which

Z f(r)res, pp,new (r)res,pp,rst

and Z Sa ,

are

respectlvely.
5. CONCLUSIONS

A new method for extracting the elastic resonance
information of the elastic scatterer from scattered waves
is proposed and numerically applied for elastic wave
resonance scattering from an elastic cylinder. The
concept of the resonance scattering function consisting
purely of the resonance information, which was
originally developed for acoustic wave scattering, has
been extended for elastic wave scattering. For a non-
mode conversion case, both the new method and the
standard RST compute identical magnitude of the
resonances from each partial wave. However, their
phases are significantly different. The new method
generates exact n radians phase shifts through the
resonances and anti-resonances which the standard RST
does not obtain. For a mode conversion case, the two
methods produce different magnitude and phase due to
the leak of the incident wave energy. The new method
computes physically more meaningful and intuitive
phase transitions through the resonance and anti-
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resonance. Based on these facts the new method more
properly extracts the resonance information from
scattered waves than the classical resonance scattering
theory.
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FIG 1 Geometry of elastic wave scattering from an elastic
cylinder
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FIG 2. Magnitude and phase of n th scattered partial wave
(solid line) for a Tungsten Carbide cylinder imbedded in
Lucite matrix and the rigid background (dotted line), for PP
case, n=2.
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FIG 3. Comparison of magnitude and phase of isolated
resonances by the new method (solid line) and RST(dotted
line) for n th scattered partial wave for a Tungsten Carbide
cylinder imbedded in Lucite matrix for PP case, (a)n=0,
(b)n=2.
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FIG 4. Comparison of magnitude and phase of isolated
resonances by the new method (solid line) and RST (dotted
line) for n th scattered partial wave for a Tungsten Carbide
cylinder imbedded in Lucite matrix for SS case, (an
=0,(b)n=2.
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FIG 5. Comparison of magnitude and phase of isolated
resonances by the new method (solid line) and RST (dotted
line) for n th scattered partial wave for a Turigsten Carbide

cylinder imbedded in Lucite matrix for PS case, n=2.
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FIG 6. Summed resonance spectra ( ZO In ) by the
n=

new method (solid line) and RST (dotted lin:) for PP case.
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